Abstract:
A fiber glass roving comprises a plurality of ends from a plurality of direct draw packages, each direct draw package having a single end. Ends from a plurality of direct draw packages may be combined to form a roving at a point of use, such as just prior to chopping the roving in a chopping gun. Assembled rovings may also be formed by winding a plurality of ends from a plurality of direct draw packages, each direct draw package having a single end, into an assembled roving package.
Abstract:
Various embodiments of the present invention relate to glass fiber forming bushings, to methods of controlling the temperature of bushings having multiple segments, to systems of controlling the temperature of bushings having multiple segments, and to other systems and methods. In one embodiment, a method of controlling the temperature of a bushing (18) having multiple segments comprises forming a plurality of filaments (12) from a bushing comprising at least two segments, gathering the filaments into at least two ends, measuring the size of each of the at least two ends, comparing the measured size of the at least two ends to a desired end size, adjusting the amount of current passing through the at least two bushing segments in response to the end size comparisons.
Abstract:
Various embodiments of the present invention relate to glass fiber forming bushings, to methods of controlling the temperature of bushings having multiple segments, to systems of controlling the temperature of bushings having multiple segments, and to other systems and methods. In one embodiment, a method of controlling the temperature of a bushing having multiple segments comprises forming a plurality of filaments from a bushing comprising at least two segments, gathering the filaments into at least two ends, measuring the size of each of the at least two ends, comparing the measured size of the at least two ends to a desired end size, adjusting the amount of current passing through the at least two bushing segments in response to the end size comparisons.
Abstract:
A shaped three-dimensional engineered fiber preform (10) construction having at least one insertion hole (30) therein and rigid composite structure formed therefrom having a singular, unitary component construction, thereby providing improved and uniform finished product characteristics and performance for structural applications, particularly for use as a connector, coupling, and the like. The shaped 3-D engineered fiber preform (10) construction of the present invention is fabricated on a 3-D weaving machine designed and configured to produce a variety of cross-sectional shapes and sizes as well as to produce a plurality of structures in series for subsequent separation and processing.
Abstract:
A fiber glass roving comprises a plurality of ends from a plurality of direct draw packages, each direct draw package having a single end. Ends from a plurality of direct draw packages may be combined to form a roving at a point of use, such as just prior to chopping the roving in a chopping gun. Assembled rovings may also be formed by winding a plurality of ends from a plurality of direct draw packages, each direct draw package having a single end, into an assembled roving package.