Abstract:
This invention relates to the reduction of sulfidation or sulfidic corrosion and the reduction of depositional fouling in general and in particular the reduction of sulifidation/sulfidic corrosion and the reduction of depositional fouling in heat transfer components, which include but are not limited to heat exchangers, furnaces and furnace tubes located in refining facilities and petrochemical processing facilities and other components used for transporting or conveying process streams, which may be prone to fouling. In particular, the present invention relates to the reduction of corrosion and fouling associated with process streams. The present invention is directed to a method of reducing fouling in a heat transfer component, which combines the use of a corrosion resistant material having the desired surface roughness with the application of vibration, pulsation and internal turbulence promoters.
Abstract:
A strainer device (16) for a fluid flow circuit (10) removes debris and solid particles from the fluid flow to prevent plugging and reduce fouling of the system. The assembly includes a chamber (22) that can be hydrocyclonic, a collection area (32), a screen assembly (50) and a distributor (36) that allows selective connection to a flushing fluid. The fluid flows through the chamber past the strainer device, with large particles collecting in the collection area under the influence of gravity and smaller solid particles being collected in the screen assembly. Particles can be flushed from the system- by selectively activating the distributor to back flush the screen assembly and sweep the collection area free of solid particles without disassembling the system.
Abstract:
This invention relates to the reduction of sulfidation or sulfidic corrosion and the reduction of depositional fouling in general and in particular the reduction of sulifidation/sulfidic corrosion and the reduction of depositional fouling in heat transfer components, which include but are not limited to heat exchangers, furnaces and furnace tubes located in refining facilities and petrochemical processing facilities and other components used for transporting or conveying process streams, which may be prone to fouling. In particular, the present invention relates to the reduction of corrosion and fouling associated with process streams. The present invention is directed to a method of reducing fouling in a heat transfer component, which combines the use of a corrosion resistant material having the desired surface roughness with the application of vibration, pulsation and internal turbulence promoters.