Abstract:
Methods for determining the fouling propensity of a hydrocarbon stream and for reducing fouling are provided. In one method, the fouling propensity of a hydrocarbon stream is determined by obtaining a parameter indicative of the fouling propensity by a regression of a series of temperature measurements data for the hydrocarbon stream exiting a test unit. In another method, an effective minimal amount of an antifoulant is added to a hydrocarbon stream to reduce fouling, where the amount of the antifoulant is determined based on the fouling propensity of the hydrocarbon stream.
Abstract:
High molecular weight naphthenic tetra-acids are added to a base crude oil to prevent and/or reduce fouling of crude oil refinery equipment. The method includes adding an effective amount of a high molecular weight naphthenic tetra-acid to the base crude oil to form a crude oil mixture and feeding the crude oil mixture to a crude oil refinery component. Particularly, the high molecular weight naphthenic tetra- acids include ARN acids.
Abstract:
Non-high solvency dispersive power (non-HSDP) crude oil with increased fouling mitigation and on-line cleaning effects includes a base non-HSDP crude oil and an effective amount of resins isolated from a high solvency dispersive power (HSDP) crude oil, and method of making same. Also, methods of using such non-HSDP crude oil for on-line cleaning of a fouled crude oil refinery component, for reducing fouling in a crude oil refinery component, and in a system capable of experiencing fouling conditions associated with particulate or asphaltene fouling.
Abstract:
Atmospheric and/or vacuum resid fractions of a high solvency dispersive power (HSDP) crude oil are added to a blend of crude oil to prevent fouling of crude oil refinery equipment and to perform on-line cleaning of fouled refinery equipment. The HSDP resid fractions dissolve asphaltene precipitates and maintain suspension of inorganic particulates before coking affects heat exchange surfaces.
Abstract:
A method for reducing the formation of deposits on the inner walls of a tubular heat exchanger through which a petroleum-based liquid is flowing comprises applying one of fluid pressure pulsations to the liquid flowing through the tubes of the exchanger and vibration to the heat exchanger to effect a reduction of the viscous boundary layer adjacent the inner walls of the tubular heat exchange surfaces. Reduction of the viscous boundary layer at the tube walls not only reduces the incidence of fouling with its consequential beneficial effect on equipment life but it also has the desirable effect of promoting heat transfer from the tube wall to the liquid in the tubes. Fouling and corrosion are further reduced by the use of a coating on the inner wall surfaces of the exchanger tubes.
Abstract:
A method for the on-line cleaning of a heat exchanger used with petroleum process fluids which create coke deposits of asphaltenic origin on the exchanger tubes. The asphaltenes are removed by re-dissolution in a solvent oil of high solubility power for the asphaltenes. Certain asphaltenic crudes are useful as solvents in view of their chemical similarity to the asphaltene coke precursors; also useful are refined petroleum fractions such as gas oils which are also characterized by their solvency for asphaltenes. The solvent oil may be admitted to the heat exchanger following withdrawal of the process fluid and then allowed to soak and dissolve the asphaltene coke precursors after which the resulting solution may be withdrawn and the exchanger returned to use without being at any time disconnected from its associated process unit.
Abstract:
The present invention provides a method for reducing fouling, including particulate-induced fouling, in a hydrocarbon refining process including the steps of providing a crude hydrocarbon for a refining process and adding an antifouling agent containing a polymer base unit and a polyamine group to the crude hydrocarbon. The antifouling agent can be obtained by reacting an epoxidation reagent with a vinyl- terminated polymer, such as polypropylene or poly(ethylene-co-propylene), to form a terminal epoxy group, followed by reacting a polyamine with the epoxy group.
Abstract:
Method of isolating active resins from a high solvency dispersive power (HSDP) crude oil includes providing a HSDP crude oil, deasphalting the HSDP crude oil into at least a deasphalted oil (DAO) fraction and a first asphaltenes fraction, deasphalting the first asphaltenes fraction to isolate active resins from a second asphaltenes fraction, and combining the DAO fraction and the second asphaltenes fraction to form a de-resinated crude. Method of using components isolated from a high solvency dispersive power (HSDP) crude oil includes providing a HSDP crude oil, deasphalting the HSDP crude oil into at least a deasphalted oil (DAO) fraction and a first asphaltenes fraction, deasphalting the first asphaltenes fraction to isolate active resins from a second asphaltenes fraction, and selecting at least one of the DAO fraction, the active resins, or the second asphaltenes fraction for use in a refinery process.
Abstract:
Method of isolating active resins from a high solvency dispersive power (HSDP) crude oil includes providing a HSDP crude oil, deasphalting the HSDP crude oil into at least a deasphalted oil (DAO) fraction and a first asphaltenes fraction, deasphalting the first asphaltenes fraction to isolate active resins from a second asphaltenes fraction, and combining the DAO fraction and the second asphaltenes fraction to form a de-resinated crude. Method of using components isolated from a high solvency dispersive power (HSDP) crude oil includes providing a HSDP crude oil, deasphalting the HSDP crude oil into at least a deasphalted oil (DAO) fraction and a first asphaltenes fraction, deasphalting the first asphaltenes fraction to isolate active resins from a second asphaltenes fraction, and selecting at least one of the DAO fraction, the active resins, or the second asphaltenes fraction for use in a refinery process.
Abstract:
The present application provides a method for reducing fouling, including particulate-induced fouling, in a hydrocarbon refining process including the steps of providing a crude hydrocarbon for a refining process; adding a polyalkyl succinic acid derivative additive. The additive can be complexed with a boronating agent, such as boric acid, to yield a boron-containing polyalkyl succinic acid derivative.