Abstract:
A method and apparatus for classifying an object in an image is disclosed. A depth image is provided. Areas of the depth image unsatisfactory for object identification are eliminated from consideration. A plurality of two-dimensional projections of surface normals in the depth image is determined. One or more objects are classified based on the plurality of surface normals.
Abstract:
A method of providing active illumination during biometry that utilizes pulsed lighting synchronized to frame acquisition. Two distinct illumination modalities are provided: the first maximizes the quality of images captured by the imaging system, and the second minimizes the overall illumination perceived by the user in combination with the first. The two modalities are provided substantially simultaneously. The first modality always includes a set of pulses synchronized with frame acquisition. The second modality may be either a second set of pulses not synchronized with frame acquisition or constant background illumination. The two modalities may be generated by two separate sources of illumination or by the same single illumination source. Adding the second modality to the first reduces user discomfort and the chances of an epileptic response as compared to using the first modality alone. The two modalities may have different wavelengths, pulse durations, or intensities.
Abstract:
A method of providing active illumination during biometry that utilizes pulsed lighting synchronized to frame acquisition. Two distinct illumination modalities are provided: the first maximizes the quality of images captured by the imaging system, and the second minimizes the overall illumination perceived by the user in combination with the first. The two modalities are provided substantially simultaneously. The first modality always includes a set of pulses synchronized with frame acquisition. The second modality may be either a second set of pulses not synchronized with frame acquisition or constant background illumination. The two modalities may be generated by two separate sources of illumination or by the same single illumination source. Adding the second modality to the first reduces user discomfort and the chances of an epileptic response as compared to using the first modality alone. The two modalities may have different wavelengths, pulse durations, or intensities.
Abstract:
A system and related method for acquiring high quality images of the iris of an unconstrained subject comprising a camera; a controllable focusing component; a focus controller component that controls the lens to focus at successively different points within a focus range, such focus control performed without any input from measurement of whether the image is in focus or out of focus, be it based from measurements of the image or other distance metrics to the subject; and a sharpness detection component that rejects the most out-of-focus images based on measurement of focus on the image is disclosed.
Abstract:
A vehicle vision system that uses a depth map, image intensity data, and system calibration parameter to determine a target's dimensions and relative position. Initial target boundary information is projected onto the depth map and onto the image intensity. A visibility analysis determines whether the rear of a target is within the system's field of view. If so, the mapped image boundary is analyzed to determine an upper boundary of the target. Then, vertical image edges of the mapped image boundary are found by searching for a strongest pair of vertical image edges that are located at about the same depth. Then, the bottom of the mapped image boundary is found (or assumed from calibration parameters). Then, the target's position is found by an averaging technique. The height and width of the target are then computed.
Abstract:
A vision system for a vehicle that identifies and classifies objects (targets) located proximate a vehicle. The system comprises a sensor array that produces imagery that is processed to generate depth maps of the scene proximate a vehicle. The depth maps are processed and compared to pre-rendered templates of target objects that could appear proximate the vehicle. A target list is produced by matching the pre-rendered templates to the depth map imagery. The system processes the target list to produce target size and classification estimates. The target is then tracked as it moves near a vehicle and the target position, classification and velocity are determined. This information can be used in a number of ways. For example, the target information may be displayed to the driver, the information may be used for an obstacle avoidance system that adjusts the trajectory or other parameters of the vehicle to safely avoid the obstacle. The orientation and/or configuration of the vehicle may be adapted to mitigate damage resulting from an imminent collision, or the driver may be warned of an impending collision.
Abstract:
The present disclosure is directed towards a compact, mobile apparatus for iris image acquisition, adapted to address effects of ocular dominance in the subject and to guide positioning of the subject's iris for the image acquisition. The apparatus may include a sensor for acquiring an iris image from a subject. A compact mirror may be oriented relative to a dominant eye of the subject, and sized to present an image of a single iris to the subject when the apparatus is positioned at a suitable distance for image acquisition. The mirror may assist the subject in positioning the iris for iris image acquisition. The mirror may be positioned between the sensor and the iris during iris image acquisition, and transmit a portion of light reflected off the iris to the sensor.
Abstract:
A system and method for obtaining biometric imagery such as iris imagery from large capture volumes is disclosed wherein a substantially rotationally symmetric mirror such as a cone or sphere is rotated at a constant velocity about a central axis.
Abstract:
A vision system that forms a map of a scene proximate a platform, e.g., a vehicle, that determines the actual ground plane form the map, and that corrects the map for differences between the actual ground plane and an assumed ground plane. The vision system may remove the actual ground plane from the map to prevent false positives. The vision system can further identify and classify objects and, if appropriate, take evasive action.
Abstract:
A vehicle vision system that uses a depth map, image intensity data, and system calibration parameter to determine a target's dimensions and relative position. Initial target boundary information is projected onto the depth map and onto the image intensity. A visibility analysis determines whether the rear of a target is within the system's field of view. If so, the mapped image boundary is analyzed to determine an upper boundary of the target. Then, vertical image edges of the mapped image boundary are found by searching for a strongest pair of vertical image edges that are located at about the same depth. Then, the bottom of the mapped image boundary is found (or assumed from calibration parameters). Then, the target's position is found by an averaging technique. The height and width of the target are then computed.