Abstract:
An electromagnetic transmission assembly. The electromagnetic transmission assembly includes a stator having a central axis and a plurality of selectively-energized electromagnetic poles. A first rotor assembly is rotatably supported for rotation about the central axis. The first rotor assembly including a first rotor shaft and a castellated rotor including a plurality of radially arranged ferromagnetic pole portions disposed in a housing. A second rotor assembly is rotatably supported for rotation about the central axis. The second rotor assembly includes a second rotor shaft and a permanent-magnet rotor. The first rotor assembly is at least partially magnetically coupled to the second rotor assembly when the plurality of electromagnetic poles are energized.
Abstract:
A rotor for an electric machine having a number of poles includes a shaft that extends along a portion of an axis and defines an outer surface. A first core portion extends along a portion of the axis to define a first core length. The first core portion includes a first reduced back portion that has an inside surface that does not contact the outer surface. A second core portion is coupled to the first core portion for rotation. In some constructions, a coupling member interconnects the shaft, the first core portion, and the second core portion such that the shaft, the first core portion, and the second core portion rotate about the axis substantially in unison.
Abstract:
A rotor for an electric machine includes a shaft that is rotatable about an axis and defines a first diameter normal to the axis. A first core portion defines a first aperture having a first aperture diameter that is larger than the first diameter. The first core portion is positioned adjacent the shaft to define a first space. A second core portion defines a second aperture having a second aperture diameter that is larger than the first diameter. The second core portion is positioned adjacent the shaft to define a second space. A damping member is positioned in the first space and the second space. The damping member at least partially interconnects the shaft, the first core portion, and the second core portion.
Abstract:
An electromagnetic transmission assembly. The electromagnetic transmission assembly includes a stator having a central axis and a plurality of selectively-energized electromagnetic poles. A first rotor assembly is rotatably supported for rotation about the central axis. The first rotor assembly including a first rotor shaft and a castellated rotor including a plurality of radially arranged ferromagnetic pole portions disposed in a housing. A second rotor assembly is rotatably supported for rotation about the central axis. The second rotor assembly includes a second rotor shaft and a permanent-magnet rotor. The first rotor assembly is at least partially magnetically coupled to the second rotor assembly when the plurality of electromagnetic poles are energized.
Abstract:
A stator for a motor having a rotor includes a plurality of laminations each formed in a first elongated arrangement. Each lamination includes a first leg, a second leg, and an intermediate portion that are configured to be rearranged and stacked in a stackwise direction to define a core having a second U-shaped arrangement. A coil is coupled to the first leg.
Abstract:
A rotor for an electric machine having a number of poles includes a shaft that extends along a portion of an axis and defines an outer surface. A first core portion extends along a portion of the axis to define a first core length. The first core portion includes a first reduced back portion that has an inside surface that does not contact the outer surface. A second core portion is coupled to the first core portion for rotation. In some constructions, a coupling member interconnects the shaft, the first core portion, and the second core portion such that the shaft, the first core portion, and the second core portion rotate about the axis substantially in unison.
Abstract:
An electric motor stator including a yoke having a plurality of yoke laminations. A body portion is formed as part of each of the plurality of yoke laminations. A first tooth is continuous with the body portion and is formed as part of at least a portion of the plurality of yoke laminations. The first tooth defines a first tooth profile. A first tooth attachment portion is formed as part of the plurality of yoke laminations. A second tooth includes a plurality of tooth laminations. Each tooth lamination of the second tooth includes a second tooth attachment portion and defines a second tooth profile that differs from the first tooth profile. The second tooth attachment portion is engaged with the first tooth attachment portion.
Abstract:
An electric motor stator including a yoke having a plurality of yoke laminations. A body portion is formed as part of each of the plurality of yoke laminations. A first tooth is continuous with the body portion and is formed as part of at least a portion of the plurality of yoke laminations. The first tooth defines a first tooth profile. A first tooth attachment portion is formed as part of the plurality of yoke laminations. A second tooth includes a plurality of tooth laminations. Each tooth lamination of the second tooth includes a second tooth attachment portion and defines a second tooth profile that differs from the first tooth profile. The second tooth attachment portion is engaged with the first tooth attachment portion.
Abstract:
An electric machine has a rotor and includes a first portion that is substantially rectangular and includes a rotor aperture configured to receive a portion of the rotor. A second portion is separate from and connected to the first portion. The second portion is substantially U-shaped and includes a first leg, a second leg, and a base. A first coil surrounds a portion of the first leg and a second coil surrounds a portion of the second leg.
Abstract:
A spoke permanent magnet rotor that includes a shaft defining a rotor axis. A first non-magnetic end portion is coupled to the shaft and a ferromagnetic pole piece defines an aperture therethrough. A second non-magnetic end portion is positioned to dispose the pole piece between the first end portion and the second end portion. A portion of one of the first end portion and the second end portion extends through the aperture and bonds with the other of the first end portion and the second end portion.