Abstract:
A flexible cable for carrying RF signals and method of manufacturing same. The cable includes an elongate base substrate including a dielectric layer with an upper metal layer deposited on one side and a lower metal layer deposited on its other side. It further includes two parallel spaced-apart series of vias formed along the length of the base substrate, each via electrically interconnecting the upper metal layer and the lower metal layer, whereby a rectangular cross- sectional waveguide is provided between the upper metal layer, the lower metal layer and the two series of vias.
Abstract:
A multiple-element antenna for a multi-band wireless mobile communication device is provided. The multiple-element antenna includes a first antenna element, a second antenna element positioned adjacent the first antenna element, and a parasitic coupler positioned adjacent the first antenna element and the second antenna element. In one embodiment, the first and second antenna elements have respective first and second operating frequency bands, and electromagnetically couple with each other and with the parasitic coupler when the multiple-element antenna is operating in the first or second operating frequency band. The first and second antenna elements are configured to be connected to first and second transceivers in a wireless mobile communication device in an alternate embodiment.
Abstract:
An antenna system for a portable communication device comprises an antenna structure for transmitting and receiving signals. The antenna structure includes multiple feeding ports and multiple antennas of different types having a common structure fully coupling the multiple antennas together. This antenna structure is made of a conductor that can be surface mounted over a nonplanar surface. When the conductor is mounted on a nonplanar surface, the antenna structure may extend in three dimensional space around the portable communications device.
Abstract:
Embodiments relate to systems and methods for conducting specific absorption rate testing of a mobile communication device. A system includes: a simulated head; a simulated hand positioned proximate to the simulated head for supporting the mobile communication device during the testing; a probe positioned within the simulated head; and a processor. The processor is operatively coupled to the probe and configured to determine a field strength of a field radiated by the mobile communication device. A method includes: positioning the mobile communication device in supported relation to a simulated hand; causing a probe to be positioned within a simulated head, the simulated head positioned in proximity to the mobile communication device; and determining a field strength of a field radiated by the mobile communication device.
Abstract:
A multiple-element antenna for a wireless communication device is provided. The multiple-element antenna includes a first antenna element having a first operating frequency band, a second antenna element having a second operating frequency band comprising a plurality of operating frequency sub-bands, and a bandwidth enhancing parasitic element positioned adjacent the second antenna element to electromagnetically couple to the second antenna element and thereby enhance the bandwidth of the second antenna element. In one embodiment, the multiple-element antenna is fabricated on a single dielectric substrate and implemented in a wireless mobile communication device having a first transceiver and a second transceiver, with the first antenna element connected to the first transceiver and the second antenna element connected to the second transceiver.
Abstract:
A multiple-band antenna having first and second operating frequency bands is provided. The antenna includes a first patch structure associated primarily with the first operating frequency band, a second patch structure electrically coupled to the first patch structure and associated primarily with the second operating frequency band, a first slot structure disposed between a first portion of the first patch structure and the second patch structure and associated primarily with the first operating frequency band, and a second slot structure disposed between a second portion of the first patch structure and the second patch structure and associated primarily with the second operating frequency band. A mounting structure for the multiple-band antenna is also provided. The mounting structure includes a first surface and a second surface opposite to and overlapping the first surface. The first and second patch structures are mounted to the first surface, and a feeding point and ground point, respectively connected to the first and second patch structures, are mounted to the second surface.
Abstract:
A mobile communication device with a base portion and a parallel slider portion connected through a slide assembly. A transceiver is housed in one of the base portion and the slider portion, and an RF antenna is housed in the other of the base portion and the slider portion. An RF-capable flex cable has one end connected to the RF antenna and has its other end connected to the transceiver for communicating RF-level signals between the antenna and transceiver.
Abstract:
A speed parameter or channel quality parameter are determined in a mobile device based on variation in frequency offset measurement. A higher variation in the frequency offset measurement reflects a poorer channel quality and a higher speed; a lower variation in the frequency offset measurement reflects a better channel quality and a lower speed. The parameter(s) may be fed back to the system and used, for example, to make adaptive modulation and coding decisions.
Abstract:
A multiple-band antenna having first and second operating frequency bands is provided. The antenna includes a first patch structure associated primarily with the first operating frequency band, a second patch structure electrically coupled to the first patch structure and associated primarily with the second operating frequency band, a first slot structure disposed between a first portion of the first patch structure and the second patch structure and associated primarily with the first operating frequency band, and a second slot structure disposed between a second portion of the first patch structure and the second patch structure and associated with both the first operating frequency band and the second operating frequency band. A mounting structure for the multiple-band antenna is also provided, and includes a first surface and a second surface opposite to and overlapping the first surface. The first and second patch structures are mounted to the first surface, and a feeding point and a ground point, respectively connected to the first and second patch structures, are mounted to the second surface.