Abstract:
Various embodiments of the present invention include systems and methods for multimodal functional imaging based upon photoacoustic and laser optical scanning microscopy. In particular, at least one embodiment of the present invention utilizes a contact lens in combination with an ultrasound transducer for purposes of acquiring photoacoustic microscopy data. Traditionally divergent imaging modalities such as confocal scanning laser ophthalmoscopy and photoacoustic microscopy are combined within a single laser system. Functional imaging of biological samples can be utilized for various medical and biological purposes.
Abstract:
A system and method for providing an optical coherence photoacoustic (OC-PAM) microscopy. An OC-PAM microscope includes a light source that outputs light, a scanner, a detector, a transducer, and an image processing module. The scanner receives the light and scans the light across a sample. The detector receives reflected light from the sample in response to the scanned light. The transducer detects photoacoustic waves induced in the sample by the scanned light. The image processing module receives output from the detector and the transducer and generates a photoacoustic microscopy (PAM) image and an optical coherence tomography (OCT) image based on the received output from the detector and the transducer. The PAM and OCT image data may be fused to form a single, OC-PAM image. Additionally, a series of PAM images and OCT images, respectively, may be combined to generate three-dimensional PAM and OCT images, respectively.
Abstract:
A system for analyzing and detecting early stage damage to the retina related to glaucoma. The reflectance of different wavelengths of light by the retinal nerve fiber layer are compared. Changes in relative reflectance values indicate damage to the retinal nerve fibers and indicate early glaucomatous optical neuropathy.
Abstract:
A system, method and apparatus for anatomical mapping utilizing optical coherence tomography. In the present invention, 3-dimensional fundus intensity imagery can be acquired from a scanning of light back-reflected from an eye. The scanning can include spectral domain scanning, as an example. A fundus intensity image can be acquired in real-time. The 3-dimensional data set can be reduced to generate an anatomical mapping, such as an edema mapping and a thickness mapping. Optionally, a partial fundus intensity image can be produced from the scanning of the eye to generate an en face view of the retinal structure of the eye without first requiring a full segmentation of the 3-D data set. Advantageously, the system, method and apparatus of the present invention can provide quantitative three-dimensional information about the spatial location and extent of macular edema and other pathologies. This three-dimensional information can be used to determine the need for treatment, monitor the effectiveness of treatment and identify the return of fluid that may signal the need for retreatment.
Abstract:
A system for analyzing and detecting early stage damage to the retina related to glaucoma. The reflectance of different wavelengths of light by the retinal nerve fiber layer are compared. Changes in relative reflectance values indicate damage to the retinal nerve fibers and indicate early glaucomatous optical neuropathy.
Abstract:
Various embodiments of the present invention include systems and methods for multimodal functional imaging based upon photoacoustic and laser optical scanning microscopy. In particular, at least one embodiment of the present invention utilizes a contact lens in combination with an ultrasound transducer for purposes of acquiring photoacoustic microscopy data. Traditionally divergent imaging modalities such as confocal scanning laser ophthalmoscopy and photoacoustic microscopy are combined within a single laser system. Functional imaging of biological samples can be utilized for various medical and biological purposes.
Abstract:
The present invention advantageously provides a method and system for increasing imaging depth. In particular, the present invention provides an OCT system that includes two or more linked OCT engines operating at different wavelengths to image different depths at different focal planes. The multiple independent images are then combined, to effectively extend the operating depth of an OCT system and thereby provide enhanced eye accommodation research capabilities, as well as the capability to enhance or otherwise extend the imaging depth for other tissue of interest.
Abstract:
A method and system for imaging tear film on an ocular surface. The method and system includes depositing a contrasting agent onto the ocular surface. The method may further include positioning an ocular device about the ocular surface. An OCT scanner may then image the ocular surface to detect impairments in the boundary layer between the tear film and the ocular device or the boundary between the tear meniscus and the ocular device.