Abstract:
An apparatus (999) and method for a light source are disclosed. The apparatus (999) comprises a light guide (904) including light extracting features (902) and at least one light source (910, 911) placed near an end of the light guide (904). Light from the light source (910, 911 ) gets deflected by the light extracting features (902) and emanates in a predetermined pattern along a surface of the light guide (904). The light guide (904) has different thicknesses in different parts.
Abstract:
An apparatus for providing a photoluminescent light source is disclosed. In one embodiment, the apparatus comprises a light source that emanates light of a particular spectrum, photoluminescent material which converts light from the light source to light of another spectrum, and a selective mirror which reflects light generated by the light source and transmits light generated by the photoluminescent material. The photoluminescent material may be arranged so as to provide a plurality of light sources that emanate light of various colors.
Abstract:
A programmable spectrum light source is disclosed. In one embodiment, the programmable light source comprises a light source, a spectrum separation system that splits the light into its constituent spectral components, a light modulator that modulates the spectral components according to a required spectral envelope and a light recombination system that recombines the shaped spectral components to produce light with a required spectrum.
Abstract:
An exemplary method includes generating, by an external control device selectively and communicatively coupled to an implantable stimulator, a calibration table indicating transmit power levels required to achieve a plurality of distinct combinations of compliance voltages and maximum stimulation current levels by the implantable stimulator, determining, by the external control device, a maximum stimulation current level to be delivered by the implantable stimulator via one or more electrodes to one or more stimulation sites within a patient during a stimulation frame, determining, by the external control device, an optimal compliance voltage that allows the implantable stimulator to deliver the determined maximum stimulation current level, and selecting, by the external control device in accordance with the calibration table, a transmit power level that results in the implantable stimulator operating at substantially the optimal compliance voltage during the stimulation frame. Corresponding methods, apparatuses and systems are also disclosed.
Abstract:
A multicolored linear light source is disclosed. In an embodiment the multicolored linear light source (100) comprises a linear light source (100) emanating light of a first spectrum, and regions of photoluminescent material (102,104,106). The light of the first spectrum interacts with regions of photoluminescent material (102,104,106) to give light of a different spectrum. The composition of different regions of photoluminescent material is different, providing light of different spectra in different regions.
Abstract:
A programmable spectrum light source is disclosed, in one embodiment, the programmable light source comprises a light source (701), a spectrum separation system (702) that splits the light into its constituent spectral components, a light modulator (703) that modulates the spectral components according to the required spectral envelope and a light recombination system (704) that recombines the shaped spectral components to produce light with a re uired s ectrum.
Abstract:
A method of manufacturing a multicolored illuminator is disclosed. In an embodiment, a first transparent sheet comprising light diffusing particles is provided. Second and third transparent cladding sheets are provided on either sides of the first transparent sheet. A mirror is provided adjacent to the second sheet. The first sheet, second sheet, third sheet and mirror are merged to give a multicolored illuminator.
Abstract:
An exemplary method includes a sound processor 1) mapping an analysis channel associated with a frequency band to a stimulation channel that comprises at least three electrodes communicatively coupled to an auditory prosthesis associated with a patient, 2) identifying a spectral peak included in an audio signal presented to the patient, the spectral peak having a peak frequency included in the frequency band, and 3) directing the auditory prosthesis to apply electrical stimulation representative of the spectral peak to a stimulation site associated with the peak frequency by simultaneously stimulating at least two of the at least three electrodes at substantially fifty percent or less of their respective most comfortable current levels (M levels) in accordance with a multi-monopolar current steering strategy. Corresponding methods and systems are also disclosed.
Abstract:
A method of manufacturing a multicolored illuminator is disclosed. In an embodiment, a first transparent sheet (499) comprising light diffusing particles is provided. Second and third transparent cladding sheets (404) are provided on either sides of the first transparent sheet. A mirror (406) is provided adjacent to the second sheet. The first sheet, second sheet, third sheet and mirror are merged to give a multicolored illuminator.
Abstract:
A system for providing a light source is disclosed. In one embodiment, the apparatus comprises a light guide made of several transparent layers having different refractive indexes.