Abstract:
A composition of matter comprising a thermoplastic resin composition derived from (i) a polyester derived from a cycloaliphatic diol, and a cycloaliphatic diacid; (ii) a copolycarbonate derived from at least from 20 mole percent to 80 mole percent of an aromatic diol derived from structure III (III) wherein R3 and R4 are independently selected from the group consisting of C 1 -C 30 aliphatic, C 2 -C 30 cycloaliphatic and C 2 -C 30 aromatic groups, X is CH 2 and m is an integer from 3 to 7, n is an integer from 1 to 4, p is an integer from 1 to 4, and from 20 mole percent to 80 mole percent of an aromatic dihydroxy compound; and wherein the resin composition is transparent is disclosed. Also disclosed is a process to prepare this composition and articles therefrom.
Abstract:
A process for preparing aromatic bisphenols, wherein the method comprises reacting an aromatic hydroxy compound with an alkylating agent having a functionality of two in the presence of a catalyst system. The catalyst system used for the process is selected from the group consisting of a heteropolyacid compound, a clay, a functionalized metal oxide catalyst and combinations of the foregoing.
Abstract:
A process for preparing aromatic bisphenols, wherein the method comprises reacting an aromatic hydroxy compound with an alkylating agent having a functionality of two in the presence of a catalyst system. The catalyst system used for the process is selected from the group consisting of a heteropolyacid compound, a clay, a functionalized metal oxide catalyst and combinations of the foregoing.
Abstract:
A fire-resistant polyestercarbonate composition comprises a polyestercarbonate polymer, a polycarbonate polymer, and a salt based flame retardant. The polyestercarbonate polymer comprises a polycarbonate unit and a polyester unit, the polyester unit derived from the reaction of isophthalic acid, terephthalic acid, and resorcinol. The composition can achieve UL94 V0 performance at 0.71 mm thickness. The composition can also maintain physical, mechanical, and processing properties with high loadings of TiO 2 .
Abstract:
A fire-resistant copolyestercarbonate composition is provided comprising a salt-based flame retardant; and a copolyestercarbonate comprising a polycarbonate unit and a polyester unit, the polyester unit derived from the reaction of isophthalic acid, terephthalic acid, and resorcinol, the copolyestercarbonate containing from about 10 mole percent to 99.9 mole percent of the polyester unit. The composition also has improved scratch resistance and may be transparent.