Abstract:
A combination EAS/RFID antenna for use in an EAS/RFID surveillance system. The antenna includes an EAS antenna element and an RFID antenna element. The EAS antenna element includes an EAS loop antenna defining an interior portion. The RFID antenna element includes an RFID patch antenna having a hatched conductor pattern. The RFID antenna element is situated proximate the EAS loop antenna in such a fashion that the overall size of the antenna is reduced.
Abstract:
An adaptive security device includes a tag module and a processor module. The processor module contains a tag disable electronic circuit and a controller. The controller provides tag control commands to the tag disable electronic circuit. The tag disable electronic circuit selectively enables or disables the tag module based on the tag control command. In one embodiment, the tag module is an electronic article surveillance ("EAS") tag module.
Abstract:
An electric motor, system and method for activating and deactivating an EAS article is disclosed. The electric motor has a stationary electromagnet having a center. The electric motor further has a platform located parallel to the electromagnet, wherein the platform rotates about a center concentric with the center of the electromagnet. The electric motor further has a first magnet with a first polarity located on the platform and a second magnet with a second polarity located on the platform radially opposite to the first magnet. The electric motor further has a commutator for periodically reversing current supplied to the electromagnet so as to produce a first magnetic field that interacts with the first and the second magnet and causes the platform to spin about its center. When the platform rotates, a second magnetic field for one of activation and deactivation of an EAS article is produced by the first and the second magnet.
Abstract:
An electronic circuit, apparatus and method for detecting and deactivating electronic article surveillance ("EAS") tags, in which a coil induces a current when subject to an electromagnetic field and also is used to transmit an electromagnetic tag signal. A tuning capacitor is in electrical communication with the coil. The tuning capacitor and the coil establish a resonance for the transmission of the electromagnetic tag signal. A storage capacitor is in electrical communication with the coil. The storage capacitor receives the induced current from the coil. The electronic circuit, apparatus and method can also include a first diode for rectifying the induced current from the coil and a processor for determining an EAS tag status.
Abstract:
An electronic circuit, apparatus and method for detecting and deactivating electronic article surveillance ("EAS") tags, in which a coil induces a current when subject to an electromagnetic field and also is used to transmit an electromagnetic tag signal. A tuning capacitor is in electrical communication with the coil. The tuning capacitor and the coil establish a resonance for the transmission of the electromagnetic tag signal. A storage capacitor is in electrical communication with the coil. The storage capacitor receives the induced current from the coil. The electronic circuit, apparatus and method can also include a first diode for rectifying the induced current from the coil and a processor for determining an EAS tag status.
Abstract:
A method and an apparatus and system are disclosed for activating, deactivating or reactivating an electronic article surveillance (EAS) label by way of a coil antenna in an H-bridge circuit which generates from the antenna: a positive increasing magnetic field; a positive decreasing magnetic field; a negative increasing magnetic field; and a negative decreasing magnetic field. The positive and negative magnetic fields are created by positive and negative currents directed through the antenna by four switches connected to the antenna in an H-bridge configuration. The method and apparatus enable low voltage activation, deactivation or reactivation of an EAS tag, e.g., at voltage levels of 12 to 24VDC, ensure uninterruptible power in case of loss of external power, and portability without a high voltage capacitor which is normally required in large deactivation designs. Activation and reactivation is by an increasing magnetic field followed by a decreasing magnetic field without altering polarity.