Abstract:
A film that is both biodegradable and flushable, and yet can still act as a barrier to water or other fluids during use, is provided. More particularly, the film contains a water-dispersible core layer that helps the film to lose its integrity after being flushed, as well as a water-barrier skin layer that helps maintain the integrity of the film during use. The nature and relative concentration of the components in the water-barrier layer are selectively controlled to achieve a combination of different functions. That is, the majority of the polymers employed in the water- barrier layer are biodegradable polymers that can be degraded by microorganisms while in an aqueous environment (e.g., septic tank, water treatment facility, etc.). To even further enhance the overall renewability of the layer, a relatively high amount of the biodegradable polymers are starch polymers, which are also renewable. The starch polymers can also minimize the degree of stickiness in the film, which can sometimes result from certain types of synthetic polymers. Even at a high starch content, the present inventors have discovered that films may still be readily formed by using synthetic biodegradable polyesters in combination with the starch to facilitate melt processing.
Abstract:
A single-ply dispersible wet wipe constructed from a single-ply wipe substrate containing a fibrous substrate and a binder composition is disclosed. The binder composition may be applied substantially to the outer surfaces of the fibrous substrate. The wet wipes also contain a wetting composition containing between about 0.5 and about 3.5 percent of an insolubilizing agent, such as salt. Upon agitation in water for ten minutes or less, the single-ply wipe substrate splits into two sections to enhance the dispersibility of the product.
Abstract:
The present disclosure generally relates to dispersible wet wipes. More particularly, the disclosure relates to a dispersible wet wipe constructed of a wipe substrate containing a tissue web consisting of cellulose fibers and a binder composition for binding said binder composition to said tissue web. The tissue web contains cellulose fibers that have a fiber length of 3 mm or less. The construction of the dispersible wipes may allow for a pass through percentage value calculates via a dispersibility shake flask test of at least about 70 percent for increased dispersibility. More desirably, the single-ply dispersible wet wipes may have a pass through percentage value of at least about 95 percent.
Abstract:
A single-ply dispersible wet wipe constructed from a single-ply wipe substrate containing a fibrous substrate and a binder composition is disclosed. The binder composition may be applied substantially to the outer surfaces of the fibrous substrate. The wet wipes also contain a wetting composition containing between about 0.5 and about 3.5 percent of an insolubilizing agent, such as salt. Upon agitation in water for ten minutes or less, the single-ply wipe substrate splits into two sections to enhance the dispersibility of the product.
Abstract:
A film that is both biodegradable and flushable, and yet can still act as a barrier to water or other fluids during use, is provided. More particularly, the film contains a water-dispersible core layer that helps the film to lose its integrity after being flushed, as well as a water-barrier skin layer that helps maintain the integrity of the film during use. The nature and relative concentration of the components in the water-barrier layer are selectively controlled to achieve a combination of different functions. That is, the majority of the polymers employed in the water- barrier layer are biodegradable polymers that can be degraded by microorganisms while in an aqueous environment (e.g., septic tank, water treatment facility, etc.). To even further enhance the overall renewability of the layer, a relatively high amount of the biodegradable polymers are starch polymers, which are also renewable. The starch polymers can also minimize the degree of stickiness in the film, which can sometimes result from certain types of synthetic polymers. Even at a high starch content, the present inventors have discovered that films may still be readily formed by using synthetic biodegradable polyesters in combination with the starch to facilitate melt processing.
Abstract:
The present disclosure generally relates to dispersible wet wipes. More particularly, the disclosure relates to a dispersible wet wipe constructed of a wipe substrate containing a tissue web consisting of cellulose fibers and a binder composition for binding said binder composition to said tissue web. The tissue web contains cellulose fibers that have a fiber length of 3 mm or less. The construction of the dispersible wipes may allow for a pass through percentage value calculates via a dispersibility shake flask test of at least about 70 percent for increased dispersibility. More desirably, the single-ply dispersible wet wipes may have a pass through percentage value of at least about 95 percent.