Abstract:
In a wireless communication system where different frequency bands Fl, F2) are deployed to generate various communication zones (22,24), pilot signal set management for a plurality of pilot.Signals generated from an additional coverage zone (24) is based on identifying a preselected signal set from the plurality of pilot signals and determining whether a predetermined criterion is met.
Abstract:
Systems and methodologies are described that facilitate quality of service (QoS) differentiation and/or prioritization across a plurality of base stations included in wireless communication systems. The system can include components and/or devices that obtain resource allocations for cells controlled by a local base station, ascertains whether or not the resource allocations satisfy quality of service targets associated with data flows traversing through cells controlled by the local base station, and dispatches inter cell interference coordination indicators to remote base stations that have a proximate relationship defined by an X2 channel between the local base station and the remote base stations.
Abstract:
An access terminal (206) configured for wireless communication with an access network (204) within a sector (1032). The access terminal (206) includes a transmitter (2608) for transmitting a reverse traffic channel to the access network (204), an antenna (2614) for receiving signals from the access network (204), a processor (2602) and memory (2604) in electronic communication with the processor (2602). Instructions stored in the memory (2604) implement a method of determining whether a current power allocation grant (1374) for a flow (1216) on the access terminal (206) has been received from the access network (204). If the current power allocation grant (1374) is still active, a current power allocation (1338a) for the flow is set equal to the current power allocation grant (1374). If the current power allocation grant (1374) has not been received, the current power allocation (1338a) for the flow is determined.
Abstract:
An access terminal (206) is configured for wireless communication with an access network (204) within a sector (1032). The access terminal (206) includes a transmitter (2608) for transmitting a reverse traffic channel to the access network (204), an antenna (2614) for receiving signals from the access network (204), a processor (2602) and memory (2604) in electronic communication with the processor (2602). Instructions are stored in the memory (2604). The instructions are arranged to estimate a current value of a reverse activity bit (1444) transmitted by the access network (204). Per flow power allocation may be decreased on increased based on an estimated current value of the reverse activity bit.
Abstract:
Techniques for selecting a serving sector for a terminal based on server selection information in order to balance the load of sectors in a wireless communication system are described. The server selection information for each sector may be set based on the load of the sector and may be used to rank the sector for selection as a serving sector. In one design, a terminal may receive server selection information for multiple sectors. The server selection information for each sector may include an offset used to adjust a measurement made by the terminal for the sector, a priority of the sector for selection as a serving sector, a DRCLock set based on the load of the sector, etc. The terminal may determine received signal qualities of the sectors. The terminal may then select one of the sectors as a serving sector based on the server selection information and the received signal qualities of the sectors.
Abstract:
Embodiments described herein relate to providing adaptive encoding of real-time information in packet-switched wireless communication systems. In an embodiment, a rate-adaptation unit may be configured to receive local as well as end-to-end feedback information associated with data transmission (such as data delay, packet loss, transmit power headroom, channel condition, sector loading, the amount of buffered data, etc.) from a wireless access module in communication with wireless/wired networks, and adapt the real-time information encoding in accordance with such feedback information.
Abstract:
Techniques for selecting a serving sector for a terminal based on server selection information in order to balance the load of sectors in a wireless communication system are described. The server selection information for each sector may be set based on the load of the sector and may be used to rank the sector for selection as a serving sector. In one design, a terminal may receive server selection information for multiple sectors. The server selection information for each sector may include an offset used to adjust a measurement made by the terminal for the sector, a priority of the sector for selection as a serving sector, a DRCLock set based on the load of the sector, etc. The terminal may determine received signal qualities of the sectors. The terminal may then select one of the sectors as a serving sector based on the server selection information and the received signal qualities of the sectors.