Abstract:
The present disclosure generally discloses a scheduling control capability for controlling scheduling of transmissions where adaptive bitrate streaming is used for delivery of content (e.g., video content or other types of content which may be streamed using adaptive bitrate streaming) from source devices to end devices. The scheduling control capability may be configured to control scheduling of transmissions of adaptive bitrate streaming flows based on priority levels assigned to the adaptive bitrate streaming flows. The scheduling control capability may be configured to dynamically control the priority levels assigned to the adaptive bitrate streaming flows. The scheduling control capability may be configured to dynamically control the priority levels assigned to the adaptive bitrate streaming flows, for use in controlling the scheduling of transmissions of the adaptive bitrate streaming flows, in manner for improving user quality-of-experience, in a manner for improving spectral efficiency, or the like, as well as various combinations thereof.
Abstract:
A method for distributing video content from a server to a plurality of media devices is provided allowing adaptive bit rate encoding to better utilize bandwidth. The method includes: determining, by the server, the bandwidth to allocate to each of the plurality of media devices using a hypertext transfer protocol-based live streaming client model or a need parameter vector, refining this determination by utilizing client feedback regarding client buffer level and playback state, client hardware capabilities, and client internally measured download rate, and providing the allocated bandwidth to each of the plurality of media devices; wherein the video content is transmitted in a plurality of segments from the server, and wherein each segment is transmitted at a bitrate that may vary from segment to segment.
Abstract:
Systems, apparatuses, and methods for implementing asynchronous feedback training sequences are described. A transmitter transmits a training sequence indication to a receiver via a communication channel including a plurality of data lines. The training sequence indication includes a bit sequence to indicate the beginning of a training sequence. The indication includes a transition from a zero to a one at the midpoint of a supercycle of 'N' clock cycles in length, followed by a predetermined number of ones. The training sequence indication is then followed by a test pattern. The beginning of the test pattern occurs at the end of a supercycle. The receiver determines if there are any errors in the received test pattern, and then sends feedback to the transmitter that indicates whether any errors were detected. Responsive to receiving the feedback, the transmitter alters delay settings for one or more of the data lines.
Abstract:
The disclosure provides for rate adaptation based on channel power tracking in wireless communications. An Access Point (AP) may measure a full-band channel quality information (CQI) for a plurality of wireless stations associated with the AP and allocate a sub-band resource unit from the plurality of sub-band resource units to a wireless station based on the full-band CQI. Aspects of the disclosure also include techniques for adjusting a data rate associated with the wireless station based on a channel power of the sub-band resource unit.
Abstract:
In accordance with an example embodiment of the present invention, disclosed is a method and an apparatus thereof for handling codec rate adaptation in a communication network applying circuit switched communication. The method is performed by a wireless device. The method comprises receiving an indication of a codec mode and determining a codec mode subset based on the indicated codec mode. Rate adaptation is applied based on the codec modes comprised in the determined codec mode subset having a bit rate below or equal to a bit rate associated with the indicated codec mode.
Abstract:
Techniques are described for wireless communication. A first method includes determining, at a user equipment (UE), that the UE is exposed to a bursty interference in a shared radio frequency spectrum band, and modifying, based at least in part on the bursty interference, a feedback message reporting by the UE to a base station. A second method includes determining, at a base station, that a UE is exposed to a bursty interference in a shared radio frequency spectrum band, and modifying, based at least in part on the bursty interference, one or more of: a link adaptation for the UE or a transmission schedule for the UE.
Abstract:
Various aspects described herein relate to communicating hybrid automatic repeat/request (HARQ) feedback. HARQ feedback related to a HARQ communication over one or more links can be received from a user equipment (UE), wherein the HARQ feedback includes at least one or more interference parameters and/or one or more predicted interference parameters. A rate control loop for each of one or more interference patterns corresponding to each of the one or more links can be maintained based at least in part on the one or more interference parameters. A scheduling grant can be generated for the UE for another instance of the HARQ communication based at least in part on the rate control loop and the one or more predicted interference parameters.
Abstract:
Various aspects described herein relate to transmitting hybrid automatic repeat/request (HARQ) feedback. A HARQ communication can be received over a set of one or more links based on a first scheduling grant. One or more interference parameters related to receiving the HARQ communication can be determined as well as one or more predicted interference parameters for a next HARQ communication. HARQ feedback can be transmitted for the HARQ communication including the one or more interference parameters and the one or more predicted interference parameters.
Abstract:
Methods and computing systems for dynamic rate adaption during real-time Long Term Evolution (LTE) communication are described. A real-time LTE communication session with another mobile device is established over an LTE connection. The real-time LTE communication session is established with codec rate. A monitor component receives data indicating a performance of the real-time LTE communication session, and causes the real-time LTE communication component to perform, during the real-time LTE communication session, a renegotiation of the codec rate based at least on the performance of the real-time LTE communication session.