Abstract:
Systems and methods ensure that datagrams retain integrity in light of the problems associated with the internetworking protocol's use of datagram identifiers drawn from a first pool of datagram identifiers. The methods involve controlling the use of datagram identifiers to ensure that only certain identifiers are allowable. A second pool of datagram identifiers is created that is different from the first pool. A datagram identifier is drawn from the second pool and assigned to a datagram in a manner that the datagram identifier is controlled from being reused during the lifetime of the datagram. In alternative embodiments the number of available datagram identifiers is either increased through optional header fields, or reduced through tracking allowed datagram identifiers. A first host notifies a second host of an allowed identifier. The second host uses the allowed identifier as a datagram identifier.
Abstract:
Systems and methods ensure that datagrams retain integrity in light of the problems associated with the internetworking protocol's use of datagram identifiers drawn from a first pool of datagram identifiers. The methods involve controlling the use of datagram identifiers to ensure that only certain identifiers are allowable. A second pool of datagram identifiers is created that is different from the first pool. A datagram identifier is drawn from the second pool and assigned to a datagram in a manner that the datagram identifier is controlled from being reused during the lifetime of the datagram. In alternative embodiments the number of available datagram identifiers is either increased through optional header fields, or reduced through tracking allowed datagram identifiers. A first host notifies a second host of an allowed identifier. The second host uses the allowed identifier as a datagram identifier.
Abstract:
Systems and methods for generating storage system commands are presented. Logical volumes comprise one or more storage areas. The methods include providing a map of the logical volume from information relating to the types of the storage areas composing the volume. Storage commands referencing the logical volume map are converted to storage area commands by command handlers associated with the type of the storage areas in the logical volume. The storage system comprises clients that access the storage areas by using a command stacks associated with the logical volumes.
Abstract:
A topology independent storage array. In a preferred embodiment the topology of the array is reconfigurable due to information control packets passed among storage nodes comprising the array. The topology of the array, as determine by the relationship between data sets stored within the array's storage nodes and storage maps of the storage node, can be reconfigured without requiring a complete duplication of the entire array. In especially preferred embodiments, the topology of the storage array follows a Z-10 or a Z-110 configuration where storage devices store one or more mirrored parts of a data set per storage device.
Abstract:
Disaggregated resources distributed among resource nodes provide access to resource consumers by offering resource node information to the resource consumers. Resource node information supplied by each individual resource node comprises incomplete information with respect to the complete disaggregated resource. Resource consumers collect resource node information to create maps of the disaggregated resource, ensure coherency, or manage the disaggregated resource.
Abstract:
Systems and methods for generating storage system commands are presented. Logical volumes comprise one or more storage areas. The methods include providing a map of the logical volume from information relating to the types of the storage areas composing the volume. Storage commands referencing the logical volume map are converted to storage area commands by command handlers associated with the type of the storage areas in the logical volume. The storage system comprises clients that access the storage areas by using a command stacks associated with the logical volumes.
Abstract:
Resource command messages comprise commands and command urgency or importance information that is interpreted by a resource device and is coupled with information relating to the resource device to determine when to process the command within the resource command message. Resource devices comprising a plurality of resource nodes provide increased performance, responsiveness, and load balancing by multiple resource nodes processing the same resource command message in parallel.