Abstract:
Bulk catalysts that include a Group VI metal, a Group VIII metal, and at least 10 - 60% of an organic compound based component are formed. The bulk catalysts have increased stability through the use of a stabilizer in the organic compound based component, the use of an improved gas phase sulfidation, or a combination thereof. The bulk catalysts are suitable for hydroprocessing of hydrocarbon feeds.
Abstract:
This disclosure relates to method for synthesizing a composition of matter comprising an inorganic, porous crystalline phase material having, after calcination, a substantially hexagonal arrangement of substantially uniformly- sized pores having mean diameters of at least about 13 Angstrom Units and exhibiting a substantially hexagonal electron diffraction pattern that can be indexed with a d1Oo value greater than about 18 Angstrom Units, the method comprising: preparing a mixture capable of forming the composition of matter, the mixture comprising sources of one or a combination of oxides of elements selected from the group consisting of divalent element W, trivalent element X, tetravalent element Y and pentavalent element Z, an organic directing agent (R) and a solvent, wherein at least a portion of the solvent comprises at least one recycle liquid produced during at least one previous process for the manufacture of the composition of matter; (a) maintaining the mixture under sufficient conditions of pH, temperature and time for formation of the composition of matter; (b) separating the composition of matter.
Abstract:
The present invention is a method to activate a noble metal complex dispersed on a catalyst support comprising calcining in hydrogen in order to decompose and reduce the noble metal complex in a single step. In a preferred embodiment, the noble metal catalyst is a combination of platinum and palladium and the noble metal complexes are the hydroxides.
Abstract:
An improved aromatics saturation process for use with lube oil boiling range feedstreams utilizing a catalyst comprising a hydrogenation-dehydrogenation component selected from the Group VIII noble metals and mixtures thereof on a mesoporous support having aluminum incorporated into its framework and an average pore diameter of 15 to less than 40Å.
Abstract:
An improved hydrotreating process for use with lube oil boiling range feedstreams utilizing a catalyst comprising a hydrogenation-dehydrogenation component selected from the Group VIII noble metals and mixtures thereof, a mesoporous support, and a binder.
Abstract:
This invention relates to a process involving hydrocracking and dewaxing of a feedstream in which a converted fraction can correspond to a majority of the product from the reaction system, while an unconverted fraction can exhibit improved properties. In this hydrocracking process, it can be advantageous for the yield of unconverted fraction for gasoline fuel application to be controlled to maintain desirable cold flow properties for the unconverted fraction. Catalysts and conditions can be chosen to assist in attaining, or to optimize, desirable product yields and/or properties.
Abstract:
An integrated process for producing lubricant base oils from feedstocks under sour conditions is provided. The ability to process feedstocks under higher sulfur conditions allows for reduced cost processing and increases the flexibility in selecting a suitable feedstock. The sour feed can be delivered to a catalytic dewaxing step without any separation of sulfur and nitrogen contaminants, or a high pressure separation can be used to partially eliminate contaminants.
Abstract:
Methods for hydroprocessing of hydrocarbon feedstocks, including hydrodesulfurization and hydrodenitrogenation, using rejuvenated supported metallic catalysts are provided. The supported metallic catalysts comprised of a Group VIII metal, a Group VIB metal, are rejuvenated by a process making use of these metals, an organic complexing agent, and optionally an organic additive. The rejuvenation includes stripping and regeneration of a spent or partially spent catalyst, followed by impregnation with metals and at least one organic compound. The impregnated, regenerated catalysts are dried, calcined, and sulfided.
Abstract:
Methods for rejuvenation of supported metallic catalysts comprised of a Group VIII metal, a Group VIB metal, making use of these metals, an organic complexing agent, and optionally an organic additive, are provided. The rejuvenation includes stripping and regeneration of a spent or partially spent catalyst, followed by impregnation with metals and at least one organic compound. The impregnated, regenerated catalysts are dried, calcined, and sulfided. The catalysts are used for hydroprocessing, particularly hydrodesulfurization and hydrodenitrogenation, of hydrocarbon feedstocks.
Abstract:
Bulk catalysts comprised of a Group VIII metal and a Group VI metals are prepared using commercial scale processes. The catalysts are prepared by a method wherein Group VI and Group VIII metal reagents are mixed and interacted with at least one organic complexing agent, dried, calcined, and sulfided. The catalysts are used for hydroprocessing, particularly hydrodesulfurizaton and hydrodenitrogenation, of hydrocarbon feedstocks.