Abstract:
A calibration system for pressure monitoring including a sensor positioned at a sensor location on or in a patient's body, a first pressure transducer positioned at a reference location remote from the sensor location to receive a signal from the sensor and to generate a first pressure signal, a calibration device positioned along a plane that is substantially coincident with a chamber or cavity (e.g., a heart chamber) of the patient to measure a reference pressure signal that represents a difference in pressure between the position of the calibration device and the reference location, a second pressure transducer positioned at the reference location remote from the sensor location to receive the reference pressure signal from the calibration device and to generate a calibration pressure signal, and an electronic device to produce an actual pressure signal using the first and calibration pressure signals.
Abstract:
A disposable, closed fluid sampling system for use with a medical conduit line (70), especially for taking blood samples from a pressure monitoring line. The conduit line (70) has at least one fluid sampling site (100, 102) interposed • between a distal segment of tubing and a proximal segment of tubing. The system includes a disposable subsystem (96) having a bypass cannula (110) adapted to engage the sampling site, a reservoir (112) for drawing a prime volume of fluid past the sampling site, and a fluid sampling container (114). A 3-way stopcock (116) may connect the reservoir, bypass cannula, and sampling vessel for controlling the sampling procedure. The bypass cannula (110) may simultaneously place the subsystem into fluid communication with an inner chamber (136) of the sampling site and exclude the proximal segment of the conduit line. Alternatively, a stopcock immediately adjacent the sampling site in the proximal segment may be utilized. A method of using the system includes attaching the disposable subsystem, opening the reservoir to the distal segment while excluding the proximal segment, drawing a prime volume of fluid into the reservoir, opening the sampling vessel to the distal segment and drawing a sample, re-infusing the prime volume into the distal segment, and removing and discarding the subsystem. The reservoir remains attached between the prime volume draw and re-infusion and is thus "closed."
Abstract:
In one embodiment the present invention provides a wireless communication system for medical sensor data. This communications system includes a portable unit that connects to a wireless sensor and a monitor unit that connects to a sensor monitor. Once activated, the units will self organize into a wireless communication structure controlled by the portable unit. As other pairs of units activate, they can self-organize their transmissions by joining an existing network or by creating new networks.
Abstract:
A calibration system for pressure monitoring including a sensor positioned at a sensor location on or in a patient's body, a first pressure transducer positioned at a reference location remote from the sensor location to receive a signal from the sensor and to generate a first pressure signal, a calibration device positioned along a plane that is substantially coincident with a chamber or cavity (e.g., a heart chamber) of the patient to measure a reference pressure signal that represents a difference in pressure between the position of the calibration device and the reference location, a second pressure transducer positioned at the reference location remote from the sensor location to receive the reference pressure signal from the calibration device and to generate a calibration pressure signal, and an electronic device to produce an actual pressure signal using the first and calibration pressure signals.
Abstract:
In one embodiment the present invention provides a wireless communication system for medical sensor data. This communications system includes a portable unit that connects to a wireless sensor and a monitor unit that connects to a sensor monitor. Once activated, the units will self organize into a wireless communication structure controlled by the portable unit. As other pairs of units activate, they can self-organize their transmissions by joining an existing network or by creating new networks.