Abstract:
Disclosed herein are azeotrope and near-azeotrope compositions comprising 1,1,1,2,2,4,5,5,6,6,7,7,7-tridecafluoro-3-heptene (HFC-162-13mczy, CF 3 CF 2 CH=CFCF 2 CF 2 CF 3 ) and 1,1,1,2,2,3,5,5,6,6,7,7,7-tridecafluoro-3-heptene (HFC-162-13mcyz, CF 3 CF 2 CF=CHCF 2 F 2 CF 3 ) and hydrogen fluoride (HF) and to azeotrope and near-azeotrope compositions comprising 1,1,1,2,2,3,4,5,5,6,6,7,7,7-tetradecafluoroheptane and hydrogen fluoride (HF). These compositions are useful in processes to produce and purify HFC-162-13mcyz, HFC-162-13mczy and HFC-63-14mee.
Abstract:
A process is disclosed for the separation of a mixture of HF and CF3CC12CF3. The process involves placing the mixture in a separation zone at a temperature of from about 0 DEG C to about 100 DEG C and at a pressure sufficient to maintain the mixture in the liquid phase, whereby an organic-enriched phase comprising less than 69 mole percent HF is formed as the bottom layer and an HF-enriched phase comprising more than 90 mole percent HF is formed as the top layer. The organic-enriched phase can be withdrawn from the bottom of the separation zone and subjected to distillation in a distillation column to recover essentially pure CF3CC12CF3. The distillate comprising HF and CF3CC12CF3 can be removed from the top of the distillation column, while essentially pure CF3CC12CF3 can be recovered from the bottom of the distillation column. Also, the HF-enriched phase can be withdrawn from the top of the separation zone and subjected to distillation in a distillation column. The distillate comprising HF and CF3CC12CF3 can be removed from the top of the distillation column while essentially pure HF can be recovered from the bottom of the distillation column. If desired, the two distillates can be recycled to the separation zone. Also disclosed are compositions of hydrogen fluoride in combination with an effective amout of CF3CC12CF3 to form an azeotrope or azeotrope-like composition with hydrogen fluoride. Included are compositions containing from about 13.8 to 31.3 mole percent CF3CC12CF3. Also disclosed is a process for producing 1,1,1,3,3,3-hexafluoropropane from a mixture comprising HF and CF3CC12CF3. This process is characterized by preparing essentially pure CF3CC12CF3 as indicated above, and reacting the CF3CC12CF3 with hydrogen. Another process for producing 1,1,1,3,3,3-hexafluoropropane disclosed herein is characterized by contacting an azeotrope of CF3CC12CF3 as indicated above with hydrogen and reacting the CF3CC12CF3 with hydrogen in the presence of HF.
Abstract:
A liquid phase process is disclosed for producing halogenated alkane adducts of the formula: CAR R CBR R (where A, B, R , R , R , and R are as defined in the specification) which involves contacting a corresponding halogenated alkane, AB, with a corresponding olefin, CR R ==CR R in a dinitrile or cyclic carbonate ester solvent which divides the reaction mixture into two liquid phases and in the presence of a catalyst system containing: (i) at least one catalyst selected from monovalent and divalent copper; and optionally (ii) a promoter selected from aromatic or aliphatic heterocyclic compounds which contain at least one carbon-nitrogen double bond in the heterocyclic ring. When hydrochlorofluorocarbons are formed, the chlorine content may be reduced by reacting the hydrochlorofluorocarbons with HF. New compounds disclosed include CF3CF2CCl2CH2CCl3, CF3CCl2CH2CH2Cl and CF3CCl2CH2CHClF. These compounds are useful as intermediates for producing hydrofluorocarbons. Azeotropes of CClF2CH2CF3 with HF and azeotropes of CF3CH2CHF2 with HF are also disclosed; as are processes for producing such azeotropes. A process for purification of certain hydrofluorocarbons and/or chloroprecursors thereof from mixtures of such compounds with HF is also disclosed.
Abstract:
Bei einem Verfahren zum Bearbeiten von in Mehrzahl entlang einer Bearbeitungslinie (10) geförderten Fisch-, Geflügel- oder anderen Fleischprodukten werden vom Verzehr auszuschließende Bestandteile abgetrennt und dadurch zum Verzehr gewonnene Verzehrprodukte (7) mittels einer automatischen Inspektionseinrichtung (3) auf zurückgebliebene Reste geprüft. Die Abtrennung erfolgt derart, dass bei einer Anzahl der Verzehrprodukte (7) minimierte Reste wenigstens einer Art zum weiteren Bearbeiten der Verzehrprodukte insbesondere zum Optimieren der Verzehrproduktgewinnung gezielt zugelassen und herbeigeführt werden. Die automatische Inspektionseinrichtung (3) wird zum Feststellen der minimierten tolerierten Reste eingestellt und inspizierte, mit den tolerierten Resten behaftete und restfreie Verzehrprodukte (71 , 72) werden voneinander separiert. In einer Vorrichtung (1) zum Durchführen des Verfahrens ist eine Trenneinrichtung (2) mit wenigstens einem Abtrennwerkzeug derart eingerichtet, dass bei einer Anzahl der Verzehrprodukte (7) minimierte tolerierte Reste wenigstens einer Art zum weiteren Bearbeiten der Verzehrprodukte (7) zurückbleiben, und die Inspektionseinrichtung (3) ist mit einer Separatoreinrichtung (41) verbunden, die restfreie und restbehaftete Verzehrprodukte (71 , 72) nach Maßgabe der Inspektionsergebnisse unterscheidet und voneinander getrennt abgibt.
Abstract:
A process for separating 1,2,3,3,3-pentafluoropropene from a first mixture comprising 1,2,3,3,3-pentafluoropropene and 1,1,3,3,3- pentafluoropropene is disclosed. The process involves (a) contacting the first mixture with at least one extractive agent to form a second mixture; (b) distilling the second mixture; and (c) recovering 1,2,3,3,3- pentafluoropropene substantially free of 1,1,3,3,3-pentafluoropropene. The extractive agent used with the present invention increases or decreases the volatility of 1,2,3,3,3-pentafluoropropene or 1,1,3,3,3- pentafluoropropene relative to each other. Also disclosed is a substantially pure 1,2,3,3,3-pentafluoropropene composition.
Abstract:
Disclosed herein are azeotrope compositions comprising 1,2,3,3,3-pentafluoropropene and hydrogen fluoride. The azeotrope compositions are useful in processes to produce and in processes to purify 1,2,3,3,3-pentafluoropropene.
Abstract:
Disclosed herein are azeotrope and near-azeotrope compositions comprising 1,1,1,2,2,4,5,5,6,6,7,7,7-tridecafluoro-3-heptene (HFC-162-13mczy, CF 3 CF 2 CH=CFCF 2 CF 2 CF 3 ) and 1,1,1,2,2,3,5,5,6,6,7,7,7-tridecafluoro-3-heptene (HFC-162-13mcyz, CF 3 CF 2 CF=CHCF 2 F 2 CF 3 ) and hydrogen fluoride (HF) and to azeotrope and near-azeotrope compositions comprising 1,1,1,2,2,3,4,5,5,6,6,7,7,7-tetradecafluoroheptane and hydrogen fluoride (HF). These compositions are useful in processes to produce and purify HFC-162-13mcyz, HFC-162-13mczy and HFC-63-14mee.
Abstract:
Disclosed herein are azeotrope and near-azeotrope compositions comprising E-1,3,3,3-tetrafluoropropene and hydrogen fluoride. These azeotrope and near-azeotrope compositions are useful in processes to produce E-1,3,3,3-tetrafluoropropene and in processes to purify E-1,3,3,3-tetrafluoropropene from mixtures of E-1,3,3,3-tetrafluoropropene with 1,1,1,3,3-pentafluoropropane and/or with hydrogen fluoride.
Abstract:
1,1,3,3,3-Pentafluoropropene (CF3CH=CF 2 , HFC-1225zc) can be produced by pyrolyzing 1,1,1,3,3,3-hexafluoropropane (CF3CH2CF 3 , HFC-236fa) in the absence of dehydrofluorination catalyst at temperatures of from about 700°C to about 1000°C and total pressures of about atmosphere pressure in an empty, tubular reactor, the interior surfaces of which comprise materials of construction resistant to hydrogen fluoride.
Abstract:
Disclosed herein are azeotrope and near-azeotrope compositions comprising E -1,3,3,3-tetrafluoropropene and hydrogen fluoride. These azeotrope and near-azeotrope compositions are useful in processes to produce E -1,3,3,3-tetrafluoropropene and in processes to purify E -1,3,3,3-tetrafluoropropene from mixtures of E -1,3,3,3-tetrafluoropropene with 1,1,1,3,3-pentafluoropropane and/or with hydrogen fluoride.