Abstract:
A method for manufacturing a cooling plate (10) for a metallurgical furnace comprising the steps of providing a slab (11) of metallic material, the slab (11) having a front face (14), an opposite rear face (16) and four side edges; and providing the slab (11) with at least one cooling channel (30) by drilling at least one blind borehole (40) into the slab (11), wherein the blind borehole (40) is drilled from a first edge (22) towards an opposite second edge (24). In accordance with an important aspect of the present invention, the method comprises the further steps of deforming the slab (11) in such a way that a first edge region (46) of the slab (11) is at least partially bent towards the rear face (16) of the slab (11); and machining excess material from the front and rear faces (14, 16) of the slab (11) to produce a cooling plate (10) having a panel-like body (12) wherein an opening to the cooling channel (30) is located in the rear face (16).
Abstract:
A cooling plate (10) for a metallurgical furnace comprises a body (12) with a front face (14), an opposite rear face (16), four side edges (18, 18', 20, 20') and at least one coolant channel (30) extending from the region of one side edge (20) to the region of the opposite side edge (20'). A bent connection pipe (26, 28) connects at least one extremity of each coolant channel (30) for coolant fluid feed or return. The bent connection pipe (26, 28) is sealingly connected with the extremity of the associated coolant channel (30) within a respective recess (32) in the body (12) that is opened toward the rear side (16), wherein the coolant channel (34) opens in said recess in a connection surface (34) beveled towards the rear side (16); and the bent connection pipe (26, 28) does not extend laterally beyond the corresponding side edge (20, 20').
Abstract:
A cooling plate (10) for a metallurgical furnace in accordance with the present invention has a panel-like body (12) with a front face (14) and an opposite rear face (16), an upper edge (22) and an opposite lower edge (24), and a first side edge (18) and an opposite second side edge (20). The front face (14) is provided with grooves (32) extending between the first and second edges (18, 20), the grooves (32) forming lamellar ribs (34) on the front face (14), each rib (34) having a crest (37) and adjoining sidewalls (39, 39'), a base (38) being arranged in the groove (32) between two neighboring ribs (34). In accordance with an important aspect of the present invention, at least one of the grooves (32) is provided with a metal insert (40) arranged against at least one of the sidewalls (39, 39').
Abstract:
A method of manufacturing a stave cooler (10; 10'; 10'') for a metallurgical furnace is disclosed. The method comprises supplying a metal plate (12; 12'; 12'') having an inward side (16) for facing the inside of the furnace and an opposite outward side (18); supplying at least one coolant pipe (14); and establishing a thermo-conductive contact between the coolant pipe and the metal plate According to the present invention, the method comprises providing the coolant pipe (14) with a flattened face (24) and externally fixing the flattened face (24) to the metal plate (12; 12'; 12'') on the outward side (18) for establishing the thermo-conductive contact.
Abstract:
A stave cooler (10) for a metallurgical furnace, in particular for a blast furnace, comprises a panel-like body (12) having a front face (14) for facing the interior of the metallurgical furnace and an opposite rear face (16); and at least one internal coolant passage arranged within the panel-like body (12). In accordance with an important aspect of the present invention, the at least one shaft (22), generally a plurality of such pikes (22), protrudes from the front face (14) of the panel-like body (12).
Abstract:
The present invention proposes a gap-filler insert (20) for use with cooling plates (12, 12') for a metallurgical furnace, the cooling plates (12, 12') having a front face (14, 14') directed towards the interior of the furnace, an opposite rear face (16, 16') directed towards a furnace wall (10) of the furnace and four edge faces (18, 18'). In accordance with an aspect of the present invention, the gap-filler insert (20) comprises a metal front plate (24) with a front side (24) facing the interior of the furnace and anchoring means (28, 28', 30, 30', 32, 34) for mounting the front plate (24) between two neighboring cooling plates (12, 12') in such a way that the front plate (24) extends between the edge faces (18, 18') of both cooling plates (12, 12'), and that the front side (26) of the front plate (24) is flush with the front faces (14, 14') of both cooling plates (12, 12').
Abstract:
A method for protecting a tuyere assembly (12) and a refractory lining of a furnace, and in particular a blast furnace, against damage caused by expansion of the refractory lining. This method comprises the steps of providing a clearance (40) between the tuyere assembly (12) and a refractory lining portion (16) below the tuyere assembly (12) and monitoring this clearance (40) by means of a displacement sensor (50).
Abstract:
A method of manufacturing a cooling plate comprises following steps: pro- viding a metallic plate body (10) with a front face (12), a rear face (14) and at least one channel (22) extending through the metallic plate body beneath the front face; inserting with radial clearance a metallic tube (30) into the channel (22) so that both tube ends (32, 34) protrude out of the channel (22); and achieving a press fit of the tube (30) within the channel (22) by shrinking the section of the channel (22) by means of a metal-forming process applied to the plate body (10).