Abstract:
The present invention relates to self-photoinitiating multifunctional urethane acrylate compositions. More particularly, the present invention relates to liquid oligomeric multifunctional acrylate compositions having pendant acrylate groups and tertiary amine groups bound as part of the polymer structure. The compositions of the present invention cure upon exposure to active radiation such as UV light in the absence of an added photoinitiator. Films made from the crosslinked oligomers of the invention are used as protective or decorative coatings on various substrates. These oligomers can be added to other resins used in adhesives or composites.
Abstract:
Self-photo-initiating liquid oligomeric compositions are disclosed. The oligomeric compositions are formed from multifunctional mercaptans and Michael addition polyacrylate resins, synthesized from multifunctional acrylates an β-dicarbonyl Michael donors, specifically β-keto esters, β-diketones, β-ketoamides or β-ketoanilides or combinations thereof. The oligomeric compositions are provided along with uses thereof and methods of fabricating.
Abstract:
The liquid, uncrosslinked, UV-curable Michael addition resins and blends of the present invention exhibit performance properties that make them very effective coating materials and these properties can be modified greatly depending upon composition. Michael donors and acceptors can be constructed from Type I and/or Type II photoinitiators and can be included in the coating compositions disclosed to make UV-curable coatings with extraordinary photoreactivity and properties. Resins can be produced that show excellent adhesion to metals, plastics, wood, paper and glass. They exhibit wide ranges of hardness, toughness, flexibility, tensile strength, stain resistance, scratch resistance, impact resistance, solvent resistance, etc. Almost any desired coating performance parameter can be attained by proper selection of raw material building blocks.
Abstract:
Self-photo-initiating liquid oligomeric compositions are disclosed. The oligomeric compositions are formed from multifunctional mercaptans and Michael addition polyacrylate resins, synthesized from multifunctional acrylates an beta-dicarbonyl Michael donors, specifically beta-keto esters, beta-diketones, beta-ketoamides or beta-ketoanilides or combinations thereof. The oligomeric compositions are provided along with uses thereof and methods of fabricating.
Abstract:
Photopolymerizable liquid oligomeric compositions are disclosed. The oligomeric compositions are formed from cycloaliphatic epoxides and Michael addition polyacrylate resins, synthesized from multifunctional acrylates and β-dicarbonyl Michael donors, specifically β-keto esters, β-diketones, β-ketoamides or β-ketoanilides or combinations thereof. The oligomeric compositions are provided along with uses thereof and methods of fabricating.
Abstract:
The invention detailed herein comprises a family of novel multifunctional acrylate ionomeric resins, which are water-dispersible, and have built-in photoinitiator. The inventive resins are made self-photoinitiating by their reaction with β-keto esters (e.g., acetoacetates), β-diketones (e.g., 2,4-pentanedione), β-keto amides (e.g., acetoacetanilide, acetoacetamide), and/or other β-dicarbonyl compounds that can participate in the Michael addition reaction as “Michael donors.”. These water-dispersable resins cure under standard ultraviolet (UV) cure conditions to give tack-free coatings without the addition of traditional photoinitiators. The present invention further relates to the use of these resins in coatings.
Abstract:
The liquid, uncrosslinked, UV-curable Michael addition resins and blends of the present invention exhibit performance properties that make them very effective coating materials and these properties can be modified greatly depending upon composition. Michael donors and acceptors can be constructed from Type I and/or Type II photoinitiators and can be included in the coating compositions disclosed to make UV-curable coatings with extraordinary photoreactivity and properties. Resins can be produced that show excellent adhesion to metals, plastics, wood, paper and glass. They exhibit wide ranges of hardness, toughness, flexibility, tensile strength, stain resistance, scratch resistance, impact resistance, solvent resistance, etc. Almost any desired coating performance parameter can be attained by proper selection of raw material building blocks.
Abstract:
The invention detailed herein comprises a family of multifunctional acrylate oligomers which are useful as pigment grinding vehicles for use in radiation-curable coating formulations. The multifunctional acrylate resins are formed by the reaction of acrylate monomers and oligomers with ß-keto esters (e.g., acetoacetates), ß-diketones (e.g., 2, 4-pentanedione), ß-keto amides (e.g., acetoacetanilide, acetoacetamide), and/or other ß-dicarbonyl compounds or Michael "donors" that can participate in the Michael addition reaction. These resin vehicles have a built-in chromophore that enables ink formulations made from their dispersions to cure under standard UV-cure conditions with significantly less photoinitiator than commercial formulations. The resins also exhibit excellent pigment wetting characteristics and can be designed to function as a single dispersion vehicle for different pigments and different ink applications such as screen, flexographic, and lithographic printing.
Abstract:
The invention detailed herein comprises a family of novel multifunctional acrylate ionomeric resins, which are water-dispersible, and have built-in photoinitiator. The inventive resins are made self-photoinitiating by their reaction with beta-keto esters (e.g., acetoacetates), beta-diketones (e.g., 2,4-pentanedione), beta-keto amides (e.g., acetoacetanilide, acetoacetamide), and/or other beta-dicarbonyl compounds that can participate in the Michael addition reaction as "Michael donors.". These water-dispersable resins cure under standard ultraviolet (UV) cure conditions to give tack-free coatings without the addition of traditional photoinitiators. The present invention further relates to the use of these resins in coatings.
Abstract:
The present invention relates to radiation-curable overprint varnishes for printed substrates based on multifunctional, uncrosslinked, liquid Michael addition resins. The compositions are UV-curable with little or no photoinitiator present.