Abstract:
An active flow control device (10) and a method for affecting a fluid boundary layer of a wind turbine blade (100) are disclosed, as well as a stand-alone module (40) including a plurality of such devices and a wind turbine blade comprising a such devices and/or modules. One or more flow effectors (14) are rotatable back and forth in an oscillating movement (A) in a rotational plane. The flow effectors (14) are also movable in a direction transverse to the rotational plane between a retracted position and an extended position.
Abstract:
An active flow control device (10) and a method for affecting a fluid boundary layer of a wind turbine blade (100) are disclosed, as well as a stand-alone module (40) including a plurality of such devices and a wind turbine blade comprising a such devices and/or modules. One or more flow effectors (14) are rotatable back and forth in an oscillating movement (A) in a rotational plane. The flow effectors (14) are also movable in a direction transverse to the rotational plane between a retracted position and an extended position.