Abstract:
Apparatus for treating a surface of a wind turbine blade (14), comprising an expandable structure (22) that is deployable from a collapsed state into an expanded state in which the structure defines an elongated treatment zone (32) into which a blade (14) is receivable in use. The apparatus includes treating means (52) arranged to apply a treatment in the treatment zone. Also provided is a method for treating a wind turbine blade (14) including: positioning a wind turbine blade in a substantially vertical orientation; locating an expandable structure (22) adjacent the wind turbine blade; deploying the expandable structure (22) about the blade (14) such that the expandable structure (22) defines an elongated treatment zone (32) which receives at least part of the blade (14); and applying surface treatment to the surface of the blade (14) using the expandable structure (22)
Abstract:
A method for repairing a gear part (1) in a wind turbine, in particular repairing damaged teeth of a toothed rim (2). A repair cavity (10) is formed by removing material, including one or more damaged teeth, from the gear part (1) bydrilling one or more holes through the gear part (1) along a direction which is substantially parallel to an axis of circular symmetry of the gear part (1). A repair segment (15) comprising one or more replacement gear teeth (16), and having a geometry which matches a geometry of the repair cavity (10), is arranged in the repair cavity (10), and attached to the gear part (1) by introducing one or more fasteners (17) into fastener openings (11, 13, 14) formed in the gear part (1).
Abstract:
The invention relates to a method of manufacturing a shell part (101) for a wind turbine blade also comprising an add-on component (301, 302) connected to the shell part (101) along a connection face. The method comprises the steps of providing an insert (102) with a side surface of approximately the same shape as the connection face, positioning the insert in an open mould, and placing one or more layers (105) of material in the mould (103) to form the shell part (101) wherein the layers (105) are placed in abutment to the side surface (104) of the insert (102) thereby forming a side surface (108) of the shell part (101) of approximately the same shape as the connection face. After resin cure, the insert (102) is removed. The invention further relates to a method of manufacturing a wind turbine blade shell member (100) comprising such a shell part (101), and layers (105) of material are placed in the mould (103) in abutment to the side surface (108) of the shell part (101) to form the add-on component (301, 302).
Abstract:
A wind turbine component (18) includes an inner member (32) and an outer member (34) disposed relative to the inner member (32), wherein the inner and outer members (32, 34) move relative to each other. A plain bearing (200) is coupled to one of the inner or outer member (32, 34) and configured to provide a fluid film (202) for maintaining separation of and facilitating relative movement between the inner and outer members (32, 34). A position adjustment mechanism (78) is coupled to the one of the inner or outer member (32, 34) for selectively moving the plain bearing (200). A position controller (176) may be operatively coupled to the position adjustment mechanism (78) for controlling the position of the plain bearing (200). The wind turbine component may be a wind turbine generator (18) with the inner member and outer member corresponding to one of the stator and rotor assemblies (32, 34). Methods for controlling the generator are also disclosed.
Abstract:
A wind turbine blade ice accretion detector 65 is configured to receive an indication of power generated by a wind turbine 67 and an indication of a plurality of environmental conditions of the wind turbine 69. It is also configured to receive an indication of an error relating to the operation of the wind turbine71. These indications are processed by the detector 65 to provide an indication of ice accretion of a wind turbine blade. In addition to or as an alternative, the wind turbine blade ice accretion detector 65 is configured to receive an indication of power generated by a wind turbine 67 in a plurality of different time periods and an indication of a plurality of environmental conditions of the wind turbine 69 in the plurality of different time periods; and to process these to provide an indication of ice accretion of a wind turbine blade.
Abstract:
The present invention relates a wind turbine generator with an electrical generator, a dump load unit, for dissipating power, a wind turbine power controller and a damping controller both arranged to control wind turbine components based on a damping reference signal, the damping reference signal is a combined signal, and comprises a first reference signal and a second reference signal, the second reference signal is an oscillating part, the wind turbine power controller is controlling the power from the electrical generator according to the first reference signal and the damping controller is controlling the dump load unit to dissipate power according to the second reference signal. The invention also relates to a method for damping oscillations with wind turbine generators.
Abstract:
The invention involves craneless dismounting and/or mounting a vertically arranged wind turbine blade from a wind turbine generator hub mounted to a nacelle placed on a tower, said hub being arranged for having a number of blades attached. The method comprises mounting a number of bolt-like extensions in positions, where fastening bolts have been removed or could be received. These extensions are much longer than the fastening bolts, so that the blade may be handled using the extensions to a position where a lifting yoke may be attached or detached, either for lowering or lifting the blade. The method may be performed without at separate crane and is particularly useful in relation to blade maintenance, repair or replacement at remote wind turbine sites which would incur high costs for a mobile crane. Moreover, the method may be performed without having personnel going outside the hub or nacelle, but can stay at the ground and within the hub.
Abstract:
A wind turbine (1) includes an optical sensor system (10) comprising one or more optical sensors (12) comprising: a sensor membrane (18); a light source (20) for illuminating a surface of the sensor membrane; an optical dispersive element (26) arranged to disperse the light from the light source (20); and a light detector (30) for receiving a portion of the dispersed light beam after reflection from the surface of the sensor membrane (18)and dispersion of the light beam by the optical dispersive element. The wavelength of the light received at the light detector (30) varies as a function of the displacement of the sensor membrane (18) and the light detector operatively provides an output based on changes in the wavelength of the received light. The wind turbine is operable based on an input to a wind turbine control system received from the optical sensor system.
Abstract:
A wind turbine (1) in which the yaw speed of a rotor (4) of the wind turbine (1) is increased, in a direction to reduce yaw error, from a first speed to a faster second speed when at least one of a yaw error threshold and a rate of change in yaw error threshold is exceeded. Yaw error is an amount an axis about which the rotor (4) is rotatable is offset from the wind direction to which the rotor (4) is exposed. As a result, the maximum loads that a wind turbine 1 should withstand may be reduced and lighter wind turbine components result.
Abstract:
A power dissipating arrangement for dissipating power from a generator in a wind turbine is provided. The generator comprises a plurality of output terminals corresponding to a multi-phase output. The power dissipating arrangement comprises a plurality of dissipating units, a plurality of semiconductor switches, a trigger circuit for switching the semiconductor switches and a control unit for controlling the operation of the trigger circuit, thereby controlling the switching of the semiconductor switches. Each dissipating unit includes a first terminal and a second terminal. The first terminal of each dissipating unit is coupled to each output terminal of the generator. Each semiconductor switch includes a first terminal anode, a second terminal and a gate terminal. The first terminal of each semiconductor switch is coupled to the second terminal of each dissipating unit and the second terminal of the semiconductor switch is coupled to the second terminal of another dissipating unit, such that the second terminal of each dissipating unit is coupled to the first terminal of one semiconductor switch and the second terminal of another semiconductor switch. The trigger circuit is coupled to the gate terminal of the plurality of the semiconductor switches for switching the semiconductor switches.