Abstract:
Provided herein are recombinant yeast host cells and methods for their use for production of isobutanol. Yeast host cells provided comprise an isobutanol biosynthetic pathway and at least one of reduced or eliminated aldehyde dehydrogenase activity, reduced or eliminated acetolactate reductase activity; or a heterologous polynucleotide encoding a polypeptide having ketol-acid reductoisomerase activity.
Abstract:
Various methods are provided for the enzymatic production of glycolic acid from glycolonitrile. These methods include: 1) use of Acidovorax facilis 72W nitrilase mutants having improved nitrilase activity for converting glycolonitrile to glycolic acid, and 2) methods to improve catalyst stability and/or productivity. The methods to improve catalyst stability/productivity include use of reaction stabilizers, running the reactions under substantially oxygen free conditions, and controlling the concentration of substrate in the reaction mixture.
Abstract:
This invention relates to nitrilase mutants having improved nitrilase activity for converting 3 hydroxynitriles to 3 hydroxycarboxylic acids. More specifically, the Acidovorax facilis 72W (ATCC 55746) nitrilase gene was mutated using error-prone PCR and site-directed mutagenesis to create nitrilase enzymes having improved nitrilase activity for converting 3 hydroxynitriles (e.g,. 3 hydroxybutyronitrile or 3-hydroxyvaleronitrile) to the corresponding 3 hydroxycarboxylic acids. A process using the improved mutants to produce the 3-hydroxycarboxylic acids is also provided.
Abstract:
Methods for the evolution of NADPH binding ketol-acid reductoisomerase enzymes to acquire NADH binding functionality are provided. Specific mutant ketol-acid reductoisomerase enzymes isolated from Pseudomonas that have undergone co-factor switching to bind NADH are described.
Abstract:
A rapid and efficient method for novel biological substance screening by surface analysis has been developed using Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS). This method relies on the surface screening of an array of micro-organisms grown on porous membranes, which had previously been in contact with a solid growth medium. ToF-SIMS analysis differentiates among organisms producing different substances, either directly as molecular product, or indirectly through the use of multivariate statistical data reduction techniques. This method has many advantages over traditional microbial screening methods, which require sample preparation and time for assay development.
Abstract:
The invention relates to suitable candidate ADH enzymes for production of lower alkyl alcohols including isobutanol. The invention also relates to recombinant host cells that comprise such ADH enzymes and methods for producing lower alkyl alcohols in the same.
Abstract:
Methods for the evolution of NADPH binding ketol-acid reductoisomerase enzymes to acquire NADH binding functionality are provided. Specific mutant ketol-acid reductoisomerase enzymes isolated from Pseudomonas that have undergone co-factor switching to bind NADH are described.
Abstract:
A process is provided for producing glycolic acid from formaldehyde and hydrogen cyanide. More specifically, heat-treated formaldehyde and hydrogen cyanide are reacted to produce glycolonitrile having low concentrations of impurities. The glycolonitrile is subsequently converted to an aqueous solution of ammonium glycolate using an enzyme catalyst having nitrilase activity derived from Acidovorax facilis 72W (ATCC 57746). Glycolic acid is recovered in the form of the acid or salt from the aqueous ammonium glycolate solution using a variety of methods described herein.
Abstract:
This invention relates to nitrilase mutants having improved nitrilase activity for converting 3 hydroxynitriles to 3 hydroxycarboxylic acids. More specifically, the Acidovorax facilis 72W (ATCC 55746) nitrilase gene was mutated using error-prone PCR and site-directed mutagenesis to create nitrilase enzymes having improved nitrilase activity for converting 3 hydroxynitriles (e.g,. 3 hydroxybutyronitrile or 3-hydroxyvaleronitrile) to the corresponding 3 hydroxycarboxylic acids. A process using the improved mutants to produce the 3-hydroxycarboxylic acids is also provided.
Abstract:
Provided herein are recombinant yeast host cells and methods for their use for production of isobutanol. Yeast host cells provided comprise an isobutanol biosynthetic pathway and at least one of reduced or eliminated aldehyde dehydrogenase activity, reduced or eliminated acetolactate reductase activity; or a heterologous polynucleotide encoding a polypeptide having ketol-acid reductoisomerase activity.