Abstract:
This invention relates to methods and apparatus for separating liquid products and catalyst particles from a slurry used in a Fischer-Tropsch reactor system. The preferred embodiments of the present invention are characterized by a separation system that uses a sedimentation chamber, which contains at least one inclined channel that enhances the settling of particles within the slurry. The enhanced settling separates the slurry into a catalyst-rich bottom stream and a catalyst-lean overhead stream. The catalyst-rich bottom product stream is preferably recycled to the reactor, while the catalyst-lean overhead stream can be further processed by a secondary separation system to produce valuable synthetic fuels. The inclined channel may be provided by a structure selected from the group consisting of tube, pipe, conduit, sheets, trays, walls, plates, and combinations thereof.
Abstract:
This invention relates to catalysts comprising a catalytic metal deposited on a composite support with well-dispersed chemical "anchor" species acting as nucleation centers for catalytic metal crystallites growth. The catalysts have the advantage that the average catalytic metal crystallite size can be controlled by the molar ratio of catalytic metal to chemical "anchor," and is not limited by the porous structure of the support. A preferred embodiment comprises a cobalt-based catalyst on a silica-alumina support made by a co-gel method, wherein its average pore size can be controlled by the pH. The alumina species in the support most likely serve as chemical "anchors" to control the dispersion of cobalt species, such that the average cobalt crystallite size can be greater than the average pore size.
Abstract:
This invention relates to catalysts comprising a catalytic metal deposited on a composite support with well-dispersed chemical "anchor" species acting as nucleation centers for catalytic metal crystallites growth. The catalysts have the advantage that the average catalytic metal crystallite size can be controlled by the molar ratio of catalytic metal to chemical "anchor," and is not limited by the porous structure of the support. A preferred embodiment comprises a cobalt-based catalyst on a silica-alumina support made by a co-gel method, wherein its average pore size can be controlled by the pH. The alumina species in the support most likely serve as chemical "anchors" to control the dispersion of cobalt species, such that the average cobalt crystallite size can be greater than the average pore size.