Abstract:
According to some embodiments, systems for improved blower fans are provided. In some embodiments, systems may include a casing comprising an inlet to accept a fluid and an outlet to evacuate the fluid. The systems may further comprise an impeller disposed within the casing, comprising a hub and one or more impeller blades coupled to the hub. In some embodiments, the inlet of the casing may be shaped to reduce the amount of fluid that evacuates the casing via the inlet due to pressure within the casing.
Abstract:
The present disclosure is related to an apparatus for generating electric power from selected wavelengths of electromagnetic radiation and a method of manufacture of said apparatus. The apparatus may include a selective wavelength absorber that is thermally coupled to a thermoelectric generator. The selective wavelength absorber may include alternating absorber and dielectric layers configured to absorb and reflect selected wavelengths of electromagnetic radiation. Absorbed electromagnetic radiation may be converted to heat energy for driving the thermoelectric generator. The method may include manufacturing the selective wavelength absorber, including depositing the alternating layers on a substrate that has been formed to receive the electromagnetic radiation at a selected angle or range of angles.
Abstract:
An apparatus includes a micro channel structure that has micro channels formed therein. The micro channels are for transporting a coolant and are intended to be proximate to an integrated circuit to transfer heat from the integrated circuit to the coolant. The apparatus further includes a cover positioned on the micro channel structure. The cover has formed therein a right-angle passage to provide fluid communication between a first port on a lower horizontal surface of the cover and a second port on a vertical surface of the cover. The cover includes a plurality of tabs. Each tab extends from a respective corner of the cover. The tabs each have an aperture formed therein. The apertures are shaped and sized to receive a fastener.
Abstract:
The present disclosure provides a method and a thermoelectric cooling apparatus for cooling a fluid. The thermoelectric cooling apparatus comprises one or more of thermoelectric devices, a hot sink, a cold sink, and a heat rejection apparatus which comprises condenser fins and a fan to attain a high figure of merit. The heat from the fluid is transferred to the hot sink and/or one or more heat pipes by the one or more thermoelectric devices. The heat from the one or more heat pipes is dissipated to the ambient through condenser fins and the fan.
Abstract:
A method, apparatus and system are described for carbon nanotube wick structures. The system may include a frame and an apparatus. The apparatus may include a heat exchanger, a cold plate with a cold plate internal volume, and a heat pipe in the cold plate internal volume. In some embodiments, the heat pipe includes a thermally conductive wall material forming the inner dimensions of the heat pipe, a catalyst layer deposited onto the wall material, a carbon nanotube array formed on the catalyst layer, and a volume of working fluid. Other embodiments may be described.
Abstract:
An apparatus includes a micro channel structure that has micro channels formed therein. The micro channels are for transporting a coolant and are intended to be proximate to an integrated circuit to transfer heat from the integrated circuit to the coolant. The apparatus further includes a cover positioned on the micro channel structure. The cover has formed therein a right-angle passage to provide fluid communication between a first port on a lower horizontal surface of the cover and a second port on a vertical surface of the cover. The cover includes a plurality of tabs. Each tab extends from a respective corner of the cover. The tabs each have an aperture formed therein. The apertures are shaped and sized to receive a fastener.
Abstract:
A method, apparatus and system are described for carbon nanotube wick structures. The system may include a frame and an apparatus. The apparatus may include a heat exchanger, a cold plate with a cold plate internal volume, and a heat pipe in the cold plate internal volume. In some embodiments, the heat pipe includes a thermally conductive wall material forming the inner dimensions of the heat pipe, a catalyst layer deposited onto the wall material, a carbon nanotube array formed on the catalyst layer, and a volume of working fluid. Other embodiments may be described.
Abstract:
According to some embodiments, systems for improved blower fans are provided. In some embodiments, systems may include a casing (210) comprising an inlet (212,214) to accept a fluid and an outlet (216) to evacuate the fluid. The systems may further comprise an impeller disposed within the casing, comprising a hub (220) and one or more impeller blades (222) coupled to the hub. In some embodiments, the inlet of the casing may be shaped (218) to reduce the amount of fluid that evacuates the casing via the inlet due to pressure within the casing.
Abstract:
A method, apparatus and system are described for carbon nanotube wick structures. The system may include a frame and an apparatus. The apparatus may include a heat exchanger, a cold plate with a cold plate internal volume, and a heat pipe in the cold plate internal volume. In some embodiments, the heat pipe includes a thermally conductive wall material forming the inner dimensions of the heat pipe, a catalyst layer deposited onto the wall material, a carbon nanotube array formed on the catalyst layer, and a volume of working fluid. Other embodiments may be described.
Abstract:
An apparatus includes a microchannel structure that has microchannels formed therein. The microchannels are for transporting a coolant and are intended to be proximate to an integrated circuit to transfer heat from the integrated circuit to the coolant. The apparatus further includes a cover positioned on the microchannel structure. The cover has formed therein a right-angle passage to provide fluid communication between a first port on a lower horizontal surface of the cover and a second port on a vertical surface of the cover. The cover includes a plurality of tabs. Each tab extends from a respective corner of the cover. The tabs each have an aperture formed therein. The apertures are shaped and sized to receive a fastener.