Abstract:
Curved lenses configured to decode three dimensional content and method of fabricating the same. The lenses comprise a polyvinylalcohol polarizer film laminated with triacetate on both sides, wherein the polarizer film has a polarizing efficiency equal to or exceeding 99% and a transmittance percentage equal to or exceeding 35% and a retarder film (e.g., norbornene copolymer resin) laminated on a front surface of the polyvinylalcohol polarizer film laminated with triacetate and aligned to produce a desired circular polarization responsive to specified retardation wavelengths.
Abstract:
The embodiments disclosed herein relate to a transparent material to provide protection to a person's eyes from harmful wavelengths of the light spectrum, overall visual comfort, or improved vision such as color enhancement, target recognition and other functions, while selectively transmitting more of certain wavelengths of the light spectrum that have a therapeutic benefit such as healing or general mood modifier. The transparent material may be a lens or a shield which is disposed in front of the wearer's eyes.
Abstract:
Curved lenses configured to decode three dimensional content and method of fabricating the same. The lenses comprise a polyvinylalcohol polarizer film or similar type of material laminated with triacetate or similar type material on one or both sides, wherein the polarizer film has a polarizing efficiency equal to or exceeding 99% and a transmittance percentage equal to or exceeding 35% and a retarder film (e.g., norbornene copolymer resin) laminated on a front surface of the polyvinylalcohol polarizer film laminated with triacetate and aligned to produce a desired circular polarization responsive to specified retardation wavelengths. Thermo forming and press polishing techniques may be used to fabricate/curve the blanks into lenses. The lenses (optical elements) may be used in an injection molding process to add thickness.
Abstract:
Curved corrective lens configured to decode three dimensional content. The corrective lens may include a wafer formed of a high efficiency polarizer material layer over a lamination layer over an adhesion layer over a retardation layer, and a lens material to which the wafer is integrated and into which a prescription is ground. Photochromic materials may also be used to provide a self-darkening feature.
Abstract:
Curved lenses configured to decode three dimensional content and method of fabricating the same. The lenses comprise a polyvinylalcohol polarizer film laminated with triacetate on both sides, wherein the polarizer film has a polarizing efficiency equal to or exceeding 99% and a transmittance percentage equal to or exceeding 35% and a retarder film (e.g., norbornene copolymer resin) laminated on a front surface of the polyvinylalcohol polarizer film laminated with triacetate and aligned to produce a desired circular polarization responsive to specified retardation wavelengths.
Abstract:
Curved lenses configured to decode three dimensional content and method of fabricating the same. The lenses decode three-dimensional content displayed on televisions or computer monitors. Sheets from which the lenses are cut have either (i) a polarizing axis of 0 degrees relative to horizontal and one sheet has a retarder axis at -45 degrees relative to horizontal and the other sheet has a retarder axis of +45 degrees relative to horizontal; (ii) a polarizing axis of -45 degrees relative to horizontal and one sheet has a retarder axis at 0 degrees relative to horizontal and the other sheet has a retarder axis of 90 degrees relative to horizontal; or (iii) a polarizing axis of +45 degrees relative to horizontal and one sheet has a retarder axis at 0 degrees relative to horizontal and the other sheet has a retarder axis of 90 degrees relative to horizontal.
Abstract:
Curved lenses configured to decode three dimensional content and method of fabricating the same. The lenses decode three-dimensional content displayed on televisions or computer monitors. Sheets from which the lenses are cut have either (i) a polarizing axis of 0 degrees relative to horizontal and one sheet has a retarder axis at -45 degrees relative to horizontal and the other sheet has a retarder axis of +45 degrees relative to horizontal; (ii) a polarizing axis of -45 degrees relative to horizontal and one sheet has a retarder axis at 0 degrees relative to horizontal and the other sheet has a retarder axis of 90 degrees relative to horizontal; or (iii) a polarizing axis of +45 degrees relative to horizontal and one sheet has a retarder axis at 0 degrees relative to horizontal and the other sheet has a retarder axis of 90 degrees relative to horizontal.
Abstract:
Curved lenses configured to decode three dimensional content and method of fabricating the same. The lenses comprise a polyvinylalcohol polarizer film or similar type of material laminated with triacetate or similar type material on one or both sides, wherein the polarizer film has a polarizing efficiency equal to or exceeding 99% and a transmittance percentage equal to or exceeding 35% and a retarder film (e.g., norbornene copolymer resin) laminated on a front surface of the polyvinylalcohol polarizer film laminated with triacetate and aligned to produce a desired circular polarization responsive to specified retardation wavelengths. Thermo forming and press polishing techniques may be used to fabricate/curve the blanks into lenses. The lenses (optical elements) may be used in an injection molding process to add thickness.
Abstract:
Curved corrective lens configured to decode three dimensional content. The corrective lens may include a wafer formed of a high efficiency polarizer material layer over a lamination layer over an adhesion layer over a retardation layer, and a lens material to which the wafer is integrated and into which a prescription is ground. Photochromic materials may also be used to provide a self-darkening feature.