Abstract:
A system for protecting data includes a virtual zeroisation device which receives data to be encrypted and key material for encrypting the data. The key material is stored in a storage device. As the encryption unit encrypts the data using the key material, the encrypted data is stored in the storage device and overwrites the key material.
Abstract:
A system includes a data storage device containing encrypted data to be decrypted, and a VZ storage device containing a key material for decrypting data, wherein the VZ storage device decrypts the encrypted data by consuming a portion of the key material and stores the decrypted data in the consumed portion of the key material.
Abstract:
A system for securely moving data from one location to another exchanges key material between the locations. The system enables cryptosystems to use key material distributed over a quantum channel.
Abstract:
A system includes a data storage device containing encrypted data to be decrypted, and a VZ storage device containing a key material for decrypting data, wherein the VZ storage device decrypts the encrypted data by consuming a portion of the key material and stores the decrypted data in the consumed portion of the key material.
Abstract:
An integrated quantum random noise source includes a substrate, an optical oscillator that may be integral to the substrate coupled by an optical waveguide to an optical directional coupler. The optical directional coupler has two outputs that are coupled by optical waveguides to a pair of photodetectors that are part of a balanced photodetector. The balanced photodetector in response outputs an analogue signal proportional to the difference in photocurrents of the two photodetectors. The analogue output signal from the balanced photodetector is a random Gaussian-distributed signal representative of quadrature measurements on the quantum vacuum state of light. The random noise source can be coupled other apparatus to provide a source of random bits.