Abstract:
Embodiments provide methods, apparatuses and systems for depositing a thermal insulator coating onto a desired surface of a mold cavity or insert or preform. Embodiments also provide casting methods using a thermal insulator coating.
Abstract:
Embodiments provide methods, apparatuses and systems for depositing a thermal insulator coating onto a desired surface of a mold cavity or insert or preform. Embodiments also provide casting methods using a thermal insulator coating.
Abstract:
In some cases a composite cutting blade includes one or more cutting segments along a periphery of a hub segment. According to an example, the hub segment and the one or more cutting segments can comprise the same or different porous material. A metallurgical bond between the one or more cutting segments and the hub segment is created by a metal which infiltrates the porous material of both segments. The one or more cutting segments also include a cutting material which at least partially defines a cutting edge and/or a cutting surface of each cutting segment extending along the periphery of the composite blade.
Abstract:
A structural component having an internal support structure extending between outer wall portions of the component with one or more compartments included within the support structure. The support structure has support members including internal walls positioned between and/or defined by the compartments. At least one support member connects between the outer wall portions of the component to enhance the structural integrity of the component. The structural component, including the internal support, are cast from a molten material, and in some cases the support members of the internal support structure are formed with a rectilinear configuration. In some cases the cast structural component is a container and the one or more compartments are configured to store a fluid, such as a gas or a liquid. One or more preforms can be used to form a container and may be retained or eliminated from the container after casting.
Abstract:
. A container having one or more compartments therewithin, wherein an internal support structure extends through the compartments. The internal support structure is configured for enhancing the structural integrity of the container. Each compartment is defined at least in part by a preform. One or more preforms are assembled into a casting insert for forming the container. The casting insert includes one or more flow paths. A molten material is introduced about the insert, including into the one or more flow paths. The solidified molten material defines the external walls and the internal support structure of the container. The preform defining the compartment within the container can be retained therewithin or can be eliminated therefrom. The compartments within the container are in fluid communications, and an opening through an external wall of the container is configured for regulating fluid communications thereacross.
Abstract:
A structural component having an internal support structure extending between outer wall portions of the component with one or more compartments included within the support structure. The support structure has support members including internal walls positioned between and/or defined by the compartments. At least one support member connects between the outer wall portions of the component to enhance the structural integrity of the component. The structural component, including the internal support, are cast from a molten material, and in some cases the support members of the internal support structure are formed with a rectilinear configuration. In some cases the cast structural component is a container and the one or more compartments are configured to store a fluid, such as a gas or a liquid. One or more preforms can be used to form a container and may be retained or eliminated from the container after casting.
Abstract:
Some embodiments provide methods and systems for casting articles. One example of a method includes providing and positioning a thermal blanket within a mold cavity and then introducing a molten material into the mold cavity and into contact with the thermal blanket. The method allows the molten material to remain in a molten state during a dwell time that extends from the introduction of the molten material at least until the mold cavity is filled. In another example, a method of using a thermal blanket includes keeping a molten material in a molten state during a dwell time extending from first introduction of the molten material until pressurization. Systems including a variety of mold types, one or more thermal blankets, and in some cases preforms and/or inserts are also provided. Also described is a novel thermal blanket and method of manufacturing the same.
Abstract:
A structural component with at least two side members has a support structure that includes a partition with multiple curved portions forming cells. The partition connects to the side members and extends between the side members at least partially along straight lines. The partition may extend along one or more straight lines from one side member to the other. One structural component is a container with a wall about the internal support structure. The container cells may be formed with a core structure. The core can include a permeable storage material and may be retained after formation, or may be removed. In some cases the container wall has generally planar surfaces, which may include surface undulations. Core structures are also provided for forming structural components. Formation can include casting a material about a core structure within a mold to form a partition extending between two or more sides.
Abstract:
Some embodiments provide methods and systems for casting articles. One example of a method includes providing and positioning a thermal blanket within a mold cavity and then introducing a molten material into the mold cavity and into contact with the thermal blanket. The method allows the molten material to remain in a molten state during a dwell time that extends from the introduction of the molten material at least until the mold cavity is filled. In another example, a method of using a thermal blanket includes keeping a molten material in a molten state during a dwell time extending from first introduction of the molten material until pressurization. Systems including a variety of mold types, one or more thermal blankets, and in some cases preforms and/or inserts are also provided. Also described is a novel thermal blanket and method of manufacturing the same.
Abstract:
In some cases a composite cutting blade includes one or more cutting segments along a periphery of a hub segment. According to an example, the hub segment and the one or more cutting segments can comprise the same or different porous material. A metallurgical bond between the one or more cutting segments and the hub segment is created by a metal which infiltrates the porous material of both segments. The one or more cutting segments also include a cutting material which at least partially defines a cutting edge and/or a cutting surface of each cutting segment extending along the periphery of the composite blade.