摘要:
Methods of manufacturing and coating glass including depositing an inorganic oxide on an exterior surface of the glass, and then applying an organofunctional silane to the glass over the inorganic oxide. The methods also may include applying an organic coating to the glass over the organofunctional silane, and curing the organic coating.
摘要:
A scratch resistant coated article is provided which is also resistant to attacks by at least some fluorine-inclusive etchant(s) for at least a period of time. In certain example embodiments, an anti-etch layer(s) is provided on a glass substrate in order to protect the glass substrate from attacks by fluorine-inclusive etchant(s). a scratch resistant layer of or including DLC is provided over the anti-layer(s), and a seed layer is provided between the anti-layer(s) and the scratch resistant layer so as to facilitate the adhesion of the scratch resistant layer while also helping to protect the anti-layer(s). Optionally, a base layer(s) or underlayer(s) may be under at least the anti-etch layer(s).
摘要:
Certain example embodiments relate to coatings comprising nano-particle loaded metal oxide matrices deposited via combustion deposition. The matrix and the nano-particles comprising the coating may be of or include the same metal or a different metal. For example, the coating may include a silicon oxide matrix (e.g., SiO 2 , or other suitable stoichiometry) having silicon oxide (e.g., silica), titanium oxide (e.g., TiO 2 , titania, or other suitable stoichiometry), and/or other nano-particles embedded therein. In certain example embodiments, the coating may serve as an anti- reflective (AR) coating and, in certain example embodiments, a percent visible transmission gain of at least about 2.0%, and more preferably between about 3.0- 3.5%, may be realized through the growth of a film on a first surface of the substrate. In certain example embodiments, the microstructure of the final deposited coating may resemble the microstructure of coatings produced by wet chemical (e.g., sol gel) techniques.
摘要:
A process for the production of a zinc oxide coating on a moving glass substrate provides a precursor mixture of a dialkylzinc compound, an oxygen- containing compound and an inert carrier gas. The precursor mixture is directed along a surface of the glass substrate in an atmospheric pressure, on line, chemical vapor deposition process. The precursor mixture is reacted at the surface of the glass substrate to form a zinc oxide coating, essentially devoid of nitrogen, at a growth rate of >100 A/second.
摘要:
Antimony doped metal oxide, preferably tin oxide coatings on glass are prepared by providing a uniform, vaporized reactant mixture containing an organotin compound, and organoantimony compound, water and oxygen, and delivering the reactant mixture to the surface of the hot ribbon of glass, where the compounds react to form an antimony doped metal oxide, preferably tin oxide coating. The antimony doped metal oxide, preferably tin oxide coatings applied in accordance with the invention exhibit improved uniformity in thickness and sheet resistance over the coated surface of the glass, and increased coating/manufacturing efficiency.
摘要:
A method of applying a coating to a glass container, which includes the steps of coating an exterior surface (16) of the glass container (12) with a thermally-curable coating material (18) containing electrically-conductive nanoparticles (20), and exposing the coated container to radio frequency radiation (24) such that absorption of the radio frequency radiation by the nanoparticles internally heats and cures the thermally-curable coating material on the exterior surface of the glass container to result in a cured coating on the glass container.
摘要:
A CVD process is defined for producing a ruthenium dioxide or ruthenium metal like coating on an article. The article is preferably for use as an architectural glazing, and preferably has low emissivity and solar control properties. The method includes providing a heated glass substrate having a surface on which the coating is to be deposited. A ruthenium containing precursor, an oxygen containing compound, and optionally water vapor, in conjunction with an inert carrier gas, are directed toward and along the surface to be coated and the ruthenium containing precursor and the oxygen containing compound are reacted at or near the surface of the glass substrate to form a ruthenium dioxide coating.
摘要:
Nitrogen doped titanium oxide coatings on a hot glass substrate are prepared by providing a uniform vaporized reactant mixture containing a titanium compound, a nitrogen compound and an oxygen-containing compound, and delivering the reactant mixture to the surface of a ribbon of hot glass, where the compounds react to form a nitrogen doped titanium oxide coating. The nitrogen doped titanium oxide coatings deposited in accordance with the invention demonstrate an increase in visible light absorption.
摘要:
A method of applying a coating to a glass container, which includes the steps of coating an exterior surface (16) of the glass container (12) with a thermally-curable coating material (18) containing electrically-conductive nanoparticles (20), and exposing the coated container to radio frequency radiation (24) such that absorption of the radio frequency radiation by the nanoparticles internally heats and cures the thermally-curable coating material on the exterior surface of the glass container to result in a cured coating on the glass container.
摘要:
It relates to coatings comprising nano-particle loaded metal oxide matrices deposited via combustion deposition. The matrix and th nano-particles comprising the coating may be of or include the same metal or a different metal. For example, the coating may include a silicon oxide matrix (e.g., SiO?, or other suitable stoichiometry) having silicon oxide (e.g., silica), titanium oxid (e.g., TiOj, titania, or other suitable stoichiometry), and/or other nano-particles embedded therein. In certain example embodiments, the coating may serve as an anti reflective (AR) coating and, in certain example embodiments, a percent visible. transmission gain of at least about 2.0%, and more preferably between about 3.0- 3.5%, may be realized through the growth of a film on a first surface of the substrate. In certain example embodiments, the microstructure of the final deposited coating may resemble the microstructure of coatings produced by wet chemical (e.g., sol gel) techniques.