Abstract:
The present invention provides methods of increasing an amount of a treatment agent in the body, a cancer or tumor. The methods include administering an inhibitor of the metabolic degradation or conversion of the treatment agent to a subject undergoing treatment for a hyperproliferative disorder with said treatment agent. Methods of treating hyperproliferative disorders, tumors and cancers are also provided.
Abstract:
The present invention relates to a method of treating a hyperproliferative disorder comprising administering a ceramide generating retinoid comprising a retinoic acid derivative or a pharmaceutically acceptable salt thereof, and D-threo-PPMP as a ceramide degradation inhibitor or a pharmaceutically acceptable salt thereof, wherein the hyperproliferative disorder is a tumor; and wherein the ceramide generating retinoid is administered in an amount effective to produce necrosis, apoptosis or both in the tumor, and the ceramide degradation inhibitor is administered in an amount effective to increase the necrosis, apoptosis or both in the tumor over that expected to be produced by the sum of that produced by the ceramide generating retinoid and the ceramide degradation inhibitor when administered separately.
Abstract:
The present invention relates to a method of treating a hyperproliferative disorder comprising administering a ceramide generating retinoid comprising a retinoic acid derivative or a pharmaceutically acceptable salt thereof, and D-threo-PPMP as a ceramide degradation inhibitor or a pharmaceutically acceptable salt thereof, wherein the hyperproliferative disorder is a tumor; and wherein the ceramide generating retinoid is administered in an amount effective to produce necrosis, apoptosis or both in the tumor, and the ceramide degradation inhibitor is administered in an amount effective to increase the necrosis, apoptosis or both in the tumor over that expected to be produced by the sum of that produced by the ceramide generating retinoid and the ceramide degradation inhibitor when administered separately.
Abstract:
The present invention relates to a method of treating a hyperproliferative disorder comprising administering a ceramide generating retinoid comprising a retinoic acid derivative or a pharmaceutically acceptable salt thereof, and D-threo-PPMP as a ceramide degradation inhibitor or a pharmaceutically acceptable salt thereof, wherein the hyperproliferative disorder is a tumor; and wherein the ceramide generating retinoid is administered in an amount effective to produce necrosis, apoptosis or both in the tumor, and the ceramide degradation inhibitor is administered in an amount effective to increase the necrosis, apoptosis or both in the tumor over that expected to be produced by the sum of that produced by the ceramide generating retinoid and the ceramide degradation inhibitor when administered separately.
Abstract:
A method of treating a hyperproliferative disorder in a subject in need of such treatment, comprising administering to said subject, in combination, a treatment effective amount of: (a) a ceramide-increasing retinoid such as fenretinide or a pharmaceutically acceptable salt thereof; and (b) at least one (and in certain embodiments at least two) compounds selected from the groups consisting of (i) a non-18 carbon chain length L-threo-sphinganine(s) or pharmaceuticeutically acceptable salt thereof, (ii) glucosylceramide or glucosyl(dihydro)ceramide synthesis inhibitor(s), and (iii) sphingomyelin or dihydrosphingomyelin synthase inhibitor(s). Preferred L-threo-sphinganines are of carbon chain length 17 carbons, 19 carbons and 20 carbons. A preferred glucosylceramide or glucosyl(dihydro)ceramide synthesis inhibitor is D-threo-1-phenyl-2-palmitoylamino-3-morpholino-1-propanol. A preferred sphingomyelin or dihydrosphingomyelin synthesis inhibitor is D-threo-1-phenyl-2-palmitoylamino-3-morpholino-1-propanol. A preferred hyperproliferative disorder is brain cancers.
Abstract:
A method of treating a hyperproliferative disorder in a subject in need of such treatment, comprising administering to said subject, in combination, a treatment effective amount of: (a) a ceramide-increasing retinoid such as fenretinide or a pharmaceutically acceptable salt thereof; and (b) at least one (and in certain embodiments at least two) compounds selected from the groups consisting of (i) a non-18 carbon chain length L-threo-sphinganine(s) or pharmaceuticeutically acceptable salt thereof, (ii) glucosylceramide or glucosyl(dihydro)ceramide synthesis inhibitor(s), and (iii) sphingomyelin or dihydrosphingomyelin synthase inhibitor(s). Preferred L-threo-sphinganines are of carbon chain length 17 carbons, 19 carbons and 20 carbons. A preferred glucosylceramide or glucosyl(dihydro)ceramide synthesis inhibitor is D-threo-1-phenyl-2-palmitoylamino-3-morpholino-1-propanol. A preferred sphingomyelin or dihydrosphingomyelin synthesis inhibitor is D-threo-1-phenyl-2-palmitoylamino-3-morpholino-1-propanol. A preferred hyperproliferative disorder is brain cancers.