Abstract:
A first receiver frequency reference is passively coupled to a second receiver by tapping a signal directly from the resonant element, such as a crystal, of an oscillator in the first receiver to drive the input of the second receiver. The sinusoidal signal from the resonant element is relatively free of harmonics and minimizes interference that could be caused by harmonics of a square wave signal coupling or an amplified signal. The oscillator of each receiver can be selectively enabled or disabled to allow the receiver to either generate or receive the frequency reference. This technique of coupling can be used to couple a frequency reference signal between integrated circuit receivers.
Abstract:
A first receiver frequency reference is passively coupled to a second receiver by tapping a signal directly from the resonant element, such as a crystal, of an oscillator in the first receiver to drive the input of the second receiver. The sinusoidal signal from the resonant element is relatively free of harmonics and minimizes interference that could be caused by harmonics of a square wave signal coupling or an amplified signal. The oscillator of each receiver can be selectively enabled or disabled to allow the receiver to either generate or receive the frequency reference. This technique of coupling can be used to couple a frequency reference signal between integrated circuit receivers.
Abstract:
Tuners with high input impedance are connected to a common radio frequency (RF) signal source. A termination load external to the tuners provides matched impedance loading for the transmission line or cable driving the tuners. Alternatively, the termination load can be located inside one tuner with a switch to enable or disable the load. All tuners receive the same signal and no signal degradation is caused when connecting multiple tuners. The multiple tuner connection is useful in television signal receiving devices that receive more than one independent channel, such as digital video recorders or picture-in-picture television receivers.
Abstract:
Circuits, systems, and methods for assembling a composite signal include a frequency translation circuit coupled to receive an input signal and operable to generate a plurality of frequency-translated versions of the input signal at a respective plurality of different frequencies, the plurality of frequency-translated input signals defining a group of frequency translated signals. The plurality of frequency translated signals may each be processed to provide a composite signal.
Abstract:
A satellite interference canceling system cancels the interference between two or more signals received by a satellite receiver. The signals can be two signals experiencing cross polarization interference or signals that experience interference from other satellite signals. Gain and phase are applied to the received signals and then combined with the other signals to result in cancellation by subtraction. The gain and phase values needed to cancel the interference are derived from measurements of carrier-to-noise ratio (C/N) as an indication of the interference level. The C/N can be measured in the set-top box indoor unit. Coherency restoration is performed in receivers that downconvert the signals before performing interference cancellation.
Abstract:
Circuits, systems, and methods for assembling a composite signal include a frequency translation circuit coupled to receive an input signal and operable to generate a plurality of frequency-translated versions of the input signal at a respective plurality of different frequencies, the plurality of frequency-translated input signals defining a group of frequency translated signals. The plurality of frequency translated signals may each be processed to provide a composite signal.
Abstract:
An outdoor satellite receiving unit (ODU) receives several independent satellite signals, selects two signals with a switch matrix, downconverts the two signals to a bandstacked signal with a high and a low band signal, and outputs the bandstacked signal on the same cable to receiver units. Several satellite signals can be selected in groups of two or more and output to independent receiver units. Signal selecting is performed at the received radio frequency (RF) and bandstacking is performed with a single downconversion step to an intermediate frequency (IF). Channel stacking on the same cable of more than two channels from several satellites can be achieved by using frequency agile downconverters and bandpass filters prior to combining at the IF output. A slow transitioning switch minimizes signal disturbances when switching and maintains input impedance at a constant value.
Abstract:
A broadband tuner includes a tracking filter with calibration to compensate for component errors and drift. The filters use off-die inductors that are preferably within a system-in- package (SIP) with other critical tuner components, which produces a highly integrated tuner front end with high Q filters within a single package. High voltage varactors with a large tuning range can be used for variable capacitors. The integration of the tuner into a SIP allows the tuner design to be optimized for cost and performance while keeping the critical RF layout requirements within the tuner. A configurable tuner front end enables modes for low noise, high linearity, good input return loss (Sl 1) across the entire RF band, and applying a test tone in the calibration mode. The switchable mode enables the tuner to be effective during weak terrestrial reception, strong terrestrial reception, and connection to a cable plant.
Abstract:
A method for mitigating phase pulling in mulitple frequency source system includes generating a first signal, the first signal referred to as an existing signal operating at an existing frequency point, the existing signal having a predefined pulling bandwidth around the existing frequency point. A request is received to generate a prospective signal at a prospective frequency point which is within the predefined pulling bandwidth of the existing signal. The prospective frequency is removed from within the predefined pulling bandwidth, and the prospective and existing signals are generated at the corresponding frequency points.
Abstract:
A tunable multiple frequency source system employing offset signal phasing includes a first frequency source, a phase delay element, and a second frequency source configured to operate concurrently with the first frequency source. The first frequency source includes an input coupled to receive a reference input signal and an output for providing a first frequency source signal. The phase delay includes an input coupled to receive the input reference signal, and an output, the phase delay element operable to apply a predefined phase delay to the input reference signal to produce a phase-delayed input signal. The second frequency source includes an input coupled to receive the phase-delayed input signal and an output for providing a second frequency source signal.