Abstract:
A thermoelectric device (100) including a combination of thermoelectric elements (60, 62) and thermomagnetic elements (65) may be applied to a pyrometallurgical processing structure (20) whose operation generates a magnetic field. The generation and existence of the magnetic field provides an increase in the electrical energy generated over operation when the field does not exist. The device enhances overall cell efficiency by recovery of electrical energy from lost diffuse heat, while simultaneously enhancing the efficiency of the heat recovery through the effects of existing magnetic fields and improving control of freeze layer formation, in an electrolytic cell for aluminium production.
Abstract:
An apparatus for the conversion of thermal energy from a surface of a pyrometallurgical vessel associated with a magnetic field to electrical energy, the device comprising a thermoelectric device having at least one thermoelectric element capable of converting a thermal energy differential into electrical energy whereby appropriate alignment in the magnetic field increases the ability of the thermoelectric device to generate electrical energy; and a support structure engagable with the pyrometallugical vessel, the support structure being able to support the thermoelectric device in a fixed position relative to the pyrometallurgical vessel and in the associated magnetic field so that a temperature differential exists between a first side and a second side of the thermoelectric device. In a preferred form the thermoelectric device is aligned in the magnetic field associated with the pyrometallurgical vessel to generate greater electrical energy from the device than would be generated in the absence of the magnetic field.
Abstract:
A method and apparatus for harvesting waste thermal energy from a pyrometallurgical vessel (1) and converting that energy to direct electrical current, the method including deriving and controlling a primary fluid flow (103) from a primary heat exchanger (10) associated with the pyrometallurgical vessel (1), providing a secondary heat exchanger (12) physically displaced from the pyrometallurgical vessel (1) which exchanges heat between the primary fluid flow (103) from the primary heat exchanger (10) and a secondary fluid flow (104). The secondary heat exchanger (12) has at least one thermoelectric or magneto-thermoelectric device having two operationally-opposed sides, the operationally-opposed sides being in thermal communication with the primary and secondary fluid flows (103,104) respectively. A temperature difference is maintained between the two operationally-opposed sides of the thermoelectric or magneto-thermoelectric device and electrical energy is generated from the temperature differential. The pyrometallurgical vessel preferably generates a magnetic field (14) in the region surrounding the pyrometallurgical vessel (1) and the secondary heat exchanger (12) having at least one magneto-thermoelectric device is positioned physically displaced from but within the magnetic field (14) surrounding the pyrometallurgical vessel such that the direction of temperature gradient across the secondary heat exchanger is oriented normally to the maximum principal direction of the magnetic field (14) and electrical energy is generated from the temperature differential and magnetic field via the Nernst effect or magneto-thermoelectric effects.
Abstract:
An apparatus for the conversion of thermal energy from a surface (20) of a pyrometallurgical vessel associated with a magnetic field to electrical energy, the device comprising a thermoelectric device having at least one thermoelectric element (60) capable of converting a thermal energy differential into electrical energy whereby appropriate alignment in the magnetic field increases the ability of the thermoelectric device to generate electrical energy; and a support structure (50) engagable with the pyrometallugical vessel, the support structure being able to support the thermoelectric device in a fixed position relative to the pyrometallurgical vessel and in the associated magnetic field so that a temperature differential exists between a first side (30) and a second side (40) of the thermoelectric device. In a preferred form the thermoelectric device is aligned in the magnetic field associated with the pyrometallurgical vessel to generate greater electrical energy from the device than would be generated in the absence of the magnetic field.