Abstract:
A radio-frequency-identification (RFID) system includes an RFID tag and an RFID reader, where the RFID reader is configured to communicate with the RFID tag using time-hopped pulse-position modulation and ultra-wideband modulation. The time-hopped pulse-position modulation includes sending from the RFID tag to the RFID reader a series of pulses in time slots selected by the RFID tag through a cryptographically secure pseudo-random generator.
Abstract:
A secure embedded system that uses cryptographic and biometric signal processing acceleration is described. In one embodiment, the secure embedded system is configured as a wireless pay-point protocol for brick-and-mortar and e-commerce applications in which biometric information is localized and does not require transmission of biometric data for authentication. In one embodiment, a key-generation function uses a dynamic key generator and static biometric components. In one embodiment, an embedded system design methodology provides hardware and software acceleration transparency.
Abstract:
A radio-frequency-identification (RFID) system includes an RFID tag and an RFID reader, where the RFID reader is configured to communicate with the RFID tag using time-hopped pulse-position modulation and ultra-wideband modulation. The time-hopped pulse-position modulation includes sending from the RFID tag to the RFID reader a series of pulses in time slots selected by the RFID tag through a cryptographically secure pseudo-random generator.