Abstract:
A method and apparatus for processing and transmitting precise orbit predictions of satellites in a Global Navigation Satellite System such as Navstar-GPS which employs curve fitting techniques and a polynomial and sinusoidal model to encode ephemerides, and particularly ephemerides of durations 6 hours or longer, in order to minimize bandwidth requirements over-the-air and NVRAM storage requirements. The methods also apply to GNSS constellations such as Galileo or GLONASS. Also, methods are disclosed for recovering the ephemeris on a GNSS receiver device in the constellation's native format.
Abstract:
A method and apparatus for processing and transmitting precise orbit predictions of satellites in a Global Navigation Satellite System such as Navstar-GPS which employs curve fitting techniques and a polynomial and sinusoidal model to encode ephemerides, and particularly ephemerides of durations 6 hours or longer, in order to minimize bandwidth requirements over-the-air and NVRAM storage requirements. The methods also apply to GNSS constellations such as Galileo or GLONASS. Also, methods are disclosed for recovering the ephemeris on a GNSS receiver device in the constellation's native format.
Abstract:
A method is disclosed for autonomously predicting satellite positions for the GPS and other satellite systems using the limited data processing capabilities of a typical embedded user device. The method involves a faster approach for performing initial element adjustments given previous position data. These adjusted initial elements are then used in the prediction calculations. The method may alternatively be used to obtain a fit to a precise orbit prediction of a satellite. A method of correcting a satellite orbit prediction is also disclosed.
Abstract:
A method is disclosed for autonomously predicting satellite positions for the GPS and other satellite systems using the limited data processing capabilities of a typical embedded user device. The method involves a faster approach for performing initial element adjustments given previous position data. These adjusted initial elements are then used in the prediction calculations. The method may alternatively be used to obtain a fit to a precise orbit prediction of a satellite. A method of correcting a satellite orbit prediction is also disclosed.