Abstract:
Described is a technology by which GPS-capable devices work with a cloud service to receive satellite visibility-related data. The satellite visibility-related data may be used to determine a location, and/or to abort a search for satellites. The cloud service may use crowd data from other GPS-capable devices. In one aspect, line-of-sight satellites are differentiated from other satellites, and used to determine which satellite signals are more trustworthy. Reflected signals also may be determined.
Abstract:
Some implementations provide low power reduced sampling of global positioning system (GPS) locations. A server may be configured to assist a mobile device in determining a location from a plurality of GPS signal samples and corresponding time stamps provided by the mobile device, such as by identifying a set of possible reference locations, which may be used to calculate a location of the mobile device. In another example, the mobile device may sample GPS signals using a GPS receiver, compress the samples, and provide the compressed samples to the server for processing.
Abstract:
Apparatus comprises: one or more memories configured to store data sets for each of plural positioning satellites, the data set for a satellite comprising ephemeris extension data and data relating to a lifetime or expiry of the ephemeris extension data, wherein the data relating to a lifetime or expiry of the ephemeris extension data is different for at least two satellites; and one or more processors. The processors are configured to execute computer code in the one or more memories such as to perform a method comprising: identifying one or more satellites for which ephemeris extension data is no longer valid; identifying one or more satellites for which ephemeris extension data is valid; determining whether to calculate a location based on the one or more satellites for which the stored ephemeris extension data is valid and, in response to a negative determination; sending a request for new ephemeris extension data; receiving new ephemeris extension data; storing the new ephemeris extension data; and using the new ephemeris extension data in calculating a location of the apparatus.
Abstract:
A method and apparatus for processing and transmitting precise orbit predictions of satellites in a Global Navigation Satellite System such as Navstar-GPS which employs curve fitting techniques and a polynomial and sinusoidal model to encode ephemerides, and particularly ephemerides of durations 6 hours or longer, in order to minimize bandwidth requirements over-the-air and NVRAM storage requirements. The methods also apply to GNSS constellations such as Galileo or GLONASS. Also, methods are disclosed for recovering the ephemeris on a GNSS receiver device in the constellation's native format.
Abstract:
A device can access scaled values and scaling factors, which are used to convert the scaled values into coefficients and residuals. The coefficients and residuals can in turn be used with time- dependent functions to reconstruct predicted ephemeris data, including clock correction data, for satellite navigation system satellites. Ephemeris data that is broadcast from any of the satellites can be used to update the calculated ephemeris data.
Abstract:
Methods and apparatus are described for processing a set of GNSS signal data derived from code observations and carrier-phase observations at multiple receivers of GNSS signals of multiple satellites over multiple epochs, the GNSS signals having at least two carrier frequencies and a navigation message containing orbit information, comprising: obtaining precise orbit information for each satellite, determining at least one set of ambiguities per receiver, each ambiguity corresponding to one of a receiver-satellite link and a satellite-receiver-satellite link, and using at least the precise orbit information, the ambiguities and the GNSS signal data to estimate a phase-leveled clock per satellite.
Abstract:
Methods and devices may request and provide assistance data from an assistance server to a receiver in a global navigation satellite system. A request for assistance data may include a preference list of navigation models suitable for the requesting receiver. Multiple preference lists for different navigation model types (e.g., orbit model, clock model, almanac model) may be included in a single list and/or data structure, or as multiple lists and/or data structures. An assistance server may receive and process the preference list, for example, by parsing and traversing the ordered list(s) for different navigation model types, in order to provide satellite navigation data to the receiver in accordance with suitable navigation models that are available at both the receiver and the assistance server.
Abstract:
A system and method for determining a set of satellites for which assistance data may be provided to a wireless device. A boundary for an approximate area in which the wireless device is located may be determined and one or more sets of satellites may be determined as a function of the boundary. An optimum set of satellites from the one or more sets of satellites may then be determined using a satellite selection function on the one or more sets of satellites at predetermined points substantially on the boundary.
Abstract:
Methods and apparatuses are provided which may be enabled within and/or for use with a Satellite Positioning System (SPS) receiver and/or other like apparatuses or device(s) to perform a rapid search startup process.