Abstract:
A wireless device having a remote station portion, such as a cellular telephone, PDA, laptop computer, handheld computer, or the like and a removably connectable medical device portion, such as a blood glucose monitor or the like, is provided. The medical device portion is separated from the remote station portion by an isolation circuit and electromagnetic shielding to inhibit the electronics and radio frequency transmission of the remote station portion interfering with the medical device. Moreover, a control processor in the remote station portion has a battery management module to disable functions as the charge in the power source falls to provide sufficient power for operation of the medical device.
Abstract:
Techniques for managing battery power of a mobile device are described. In an aspect, battery power may be reserved for an application prior to execution of the application on the mobile device. The reservation may ensure that the application has sufficient battery power for execution. In another aspect, battery power may be allocated to applications based on their priorities. The applications may be ordered based on their priorities, and the available battery power for the mobile device may be allocated to one application at a time, starting with the highest priority application. In yet another aspect, battery power may be allocated to applications based on a battery discharge curve for the mobile device. An operating point on the battery discharge curve may be selected based on at least one objective. The available battery power may be determined based on the selected operating point and allocated to the applications.
Abstract:
Methods, apparatuses, and software to monitor, troubleshoot, or diagnose one or more specialty modules associated with a portable communication device are provided. The methods, apparatuses, and software identify the specialty module, obtain and execute procedures to monitor, test, or diagnose the specialty module. If unsatisfactory, error, defective or the like performance is identified, a solution is applied to correct the performance.
Abstract:
Techniques for managing battery power of a mobile device are described. In an aspect, battery power may be reserved for an application prior to execution of the application on the mobile device. The reservation may ensure that the application has sufficient battery power for execution. In another aspect, battery power may be allocated to applications based on their priorities. The applications may be ordered based on their priorities, and the available battery power for the mobile device may be allocated to one application at a time, starting with the highest priority application. In yet another aspect, battery power may be allocated to applications based on a battery discharge curve for the mobile device. An operating point on the battery discharge curve may be selected based on at least one objective. The available battery power may be determined based on the selected operating point and allocated to the applications.
Abstract:
Music can be broadcast from a radio station and recorded onto a cache of a personal electronic device, such as a portable digital music player. The recording can occur such that there is segmenting of music into different cache portions based upon classification. Instead of playing music from the radio station, music can be played from the cache to ensure high quality and desirable variety. Different rules can be used to govern which music is played as well as how music should be removed from the cache. In addition, targeted advertisements can be used that relate to the music in the cache as well as a user location.
Abstract:
A method and apparatus for creating a dynamic GeoFence area by determining an instant reference point using a first set of pseudorange measurements received by a GeoFence device, defining the dynamic GeoFence area referenced to the instant reference point, determining a position fix using a second set of pseudorange measurements, and comparing the position fix to the dynamic GeoFence area. In one aspect, an alert message based on the comparison results is presented to a user.
Abstract:
A method and apparatus for creating a dynamic GeoFence area by determining an instant reference point using a first set of pseudorange measurements received by a GeoFence device, defining the dynamic GeoFence area referenced to the instant reference point, determining a position fix using a second set of pseudorange measurements, and comparing the position fix to the dynamic GeoFence area. In one aspect, an alert message based on the comparison results is presented to a user.
Abstract:
A modular package may be utilized to mount an RF system-on-chip in one of plural configurations, such that the same modular package may be utilized to enable plural device formats, while reducing the amount of RF testing needed to change device formats. In one configuration, a surface mount device is mounted onto a first surface of a board, and the board is directly surface mounted onto a base board. Here, the base board includes a hole for accommodating the surface mount device, providing a thin device format. In a second configuration, a spacer is mounted onto the first surface of the board, such that a gap is provided between the board and the base board for accommodating the surface mount device, providing a relatively thicker device, but providing additional surface area where the hole otherwise would be, reducing the device size.
Abstract:
Implementations relate to systems and methods for localized notification that provide localized information to one or more mobile devices in a wireless communication system that are located in one or more geographical regions. The wireless communication system includes a localized notification server that responds to geographically-targeted broadcast requests and localized service or information requests. The localized notification server localizes components of the wireless communication system into sets of localized components that provide wireless communication service to mobile devices in the specific geographical regions. In response to a request to broadcast to a target geographical region, the localized notification server identifies a set of localized components associated with the target geographical region. The localized notification server then broadcasts information to mobile devices actively serviced by the set of localized components.
Abstract:
Implementations relate to systems and methods for localized notification that provide localized information to one or more mobile devices in a wireless communication system that are located in one or more geographical regions. The wireless communication system includes a localized notification server that responds to geographically-targeted broadcast requests and localized service or information requests. The localized notification server localizes components of the wireless communication system into sets of localized components that provide wireless communication service to mobile devices in the specific geographical regions. In response to a request to broadcast to a target geographical region, the localized notification server identifies a set of localized components associated with the target geographical region. The localized notification server then broadcasts information to mobile devices actively serviced by the set of localized components.