Abstract:
Method and apparatus for cooling a hydrocarbon stream (520) to produce an at least partially liquefied hydrocarbon stream (530). A cooled main refrigerant stream (245) is further cooled against at least a part of one or more expanded cooled pre-cooling refrigerant streams (155). A hydrocarbon stream (520) is at least partially liquefied in one or more main heat exchangers (220) against an expanded cooled main refrigerant stream (255), to provide an at least partially, preferably fully, liquefied hydrocarbon stream (530). The air inlet stream (45a) of a first gas turbine (50a) is cooled using cooling duty from the main refrigerant in the main refrigerant circuit (200) to provide a cooled air inlet stream (55a) to the first gas turbine (50a).
Abstract:
A gas turbine system comprises a gas turbine (5) having a low pressure compression stage (50) and a high pressure compression stage (60), a combustion chamber (70), and an expansion stage (80) connected to the combustion chamber (70). The low pressure compression stage (50) and the high pressure compression stage (60) are connected with each other via an intercooling stage (20), wherein the low pressure compressed air stream (55] from the low pressure compression stage (50) is chilled to an intercooling temperature that is lower than the ambient temperature of the air source from which the air stream (45) was supplied to the low pressure compression stage (50) of the gas turbine (5).
Abstract:
Method and apparatus for cooling a hydrocarbon stream (520) to produce an at least partially liquefied hydrocarbon stream (530). A cooled main refrigerant stream (245) is further cooled against at least a part of one or more expanded cooled pre-cooling refrigerant streams (155). A hydrocarbon stream (520) is at least partially liquefied in one or more main heat exchangers (220) against an expanded cooled main refrigerant stream (255), to provide an at least partially, preferably fully, liquefied hydrocarbon stream (530). The air inlet stream (45) of a first gas turbine (50) is cooled using cooling duty from the main refrigerant in the main refrigerant circuit (200) to provide a cooled air inlet stream (55) to the first gas turbine (50).
Abstract:
A gaseous hydrocarbon stream (10) is cooled against a first refrigerant and a second refrigerant, to produce a liquefied hydrocarbon stream (20). The first refrigerant is cycled in a first refrigerant circuit (100), comprising compressing in a first compressor train (110) comprising one or more first compressors on a common drive shaft (215). The second refrigerant is cycled in a second refrigerant circuit (200), comprising compressing in a second compressor train (210) comprising one or more second compressors on said common drive shaft (215). The common drive shaft (215) is driven with one single gas turbine (220). The single gas turbine (220) is a multiple shaft gas turbine with a shaft power for mechanical drive of at least 40 MW, comprising at least one auxiliary turbine (180) and at least one inlet air compressor (156) mechanically connected to the auxiliary turbine (180) via a first internal shaft (22), and a power turbine (190) drivingly engaged with the common drive shaft (215), which power turbine (190) is separately rotatable from the first internal shaft (22).
Abstract:
A method of controlling a compressor (12) for a gaseous hydrocarbon stream (10) such as natural gas, comprising at least the steps of: (a) passing the gaseous hydrocarbon stream (10) through the compressor (12) to provide a compressed hydrocarbon stream (20); (b) passing at least a fraction (30) of the compressed hydrocarbon stream (20) through an expander (14) which is mechanically interconnected with the compressor (12), to provide an expanded hydrocarbon stream (40); and (c) re-circulating part or all of the expanded hydrocarbon stream (40) through the compressor (12).
Abstract:
The present invention relates to a method for the regasification of liquefied natural gas, the method at least comprising the steps of: a) removing liquefied natural gas (10) from a storage tank (2) using a first pump unit (3); b) passing the removed liquefied natural gas (20) to and feeding it into a second pump unit (4) at an inlet pressure; c) increasing the pressure of the liquefied natural gas in the second pump unit (4) thereby obtaining pressurized liquefied natural gas (50); d) vaporizing the pressurized liquefied natural gas (50) thereby obtaining gaseous natural gas (60); wherein the second pump unit (4) discharges the pressurized liquefied natural gas (50) at a pre-selected pressure value, regardless of the inlet pressure at the second pump unit (4).