Abstract:
The invention relates to a blood oximeter for measuring the oxygenation and at least one other parameter of flowing blood in living tissue. According to the invention, the blood oximeter comprises two lightsources (2, 3) emitting light of different wavelengths into tissue, and preferably a light detector (4) for detecting a transmitted and/or reflected part of the light emitted into the tissue, wherein at least one of the light sources is a laser with a laser cavity emitting a laser beam, the laser being adapted to allow a part of the laser beam which is scattered by the tissue to re-enter into the laser cavity, and wherein a laser beam sensor (7, 8) for measuring the light emitted from the laser is provided, the laser beam sensor (7, 8), thus, obtaining a signal which varies in accordance with the self-mixing interferometric effect between the original laser beam and the scattered laser beam. Accordingly, such a blood oximeter is provided that performs wellat low perfusion and which further allows for reliable measurements
Abstract:
The invention provides a device and system for measuring core (11) body temperature, comprising two pairs of temperature sensors (8-1a, 8-1b, 8-2a, 8-2b), with a structure (2, 3, 4, 5, 6, 7) therebetween, and a heat flux modulator (9) for changing the heat flux through one pair (8-1a, 8-1b) more than the heat flux through the other pair (8-2a, 8- 2b). By measuring the temperatures for the two pairs of temperature sensors, the core (11) body temprature may be derived. This device allows more design freedom, and it is easier to manufacture and gives a more accurate core temperature.
Abstract:
The present invention relates to a magnetic induction tomography system and method for studying the electromagnetic properties of an object. In order to provide a high resolution MIT technique without the need of increasing the number of coils, a magnetic induction tomography system (1) for studying the electromagnetic properties of an object (2) is suggested, the system comprising one or more generator coils (4) adapted for generating a primary magnetic field, said primary magnetic field inducing an eddy current in the object (2), one or more sensor coils (5) adapted for sensing a secondary magnetic field, said secondary magnetic field being generated as a result of said eddy current, and means (6, 7, 8, 9) for providing a relative movement between one or more generator coils (4) and/or one or more sensor coils (5) on the one hand and the object (2) to be studied on the other hand.
Abstract:
The invention relates to the area of rehabilitation for patients with motor disabilities, especially for hemiplegic patients. With the present invention a long term, e.g. day and night, patient activity monitoring can be established in a home environment. A core idea of the invention is to evaluate the functional use of a limb by determining the synchronicity of the patient's movements depending on the movement's cyclicity. With this approach a reliable assessment of limb usage can be made based on the daily living activities of the patient. With the present invention the progress of rehabilitation can be monitored and guidance can be provided to therapists and patients about the state of the rehabilitation process. It further makes them aware of a lack of limb usage.
Abstract:
The present invention relates to a magnetic induction tomography system and method for studying the electromagnetic properties of an object. In order to provide a high resolution MIT technique without the need of increasing the number of coils, a magnetic induction tomography system (1) for studying the electromagnetic properties of an object (2) is suggested, the system comprising one or more generator coils (4) adapted for generating a primary magnetic field, said primary magnetic field inducing an eddy current in the object (2), one or more sensor coils (5) adapted for sensing a secondary magnetic field, said secondary magnetic field being generated as a result of said eddy current, and means (6, 7, 8, 9) for providing a relative movement between one or more generator coils (4) and/or one or more sensor coils (5) on the one hand and the object (2) to be studied on the other hand.
Abstract:
The invention relates to heart measurement and heart monitoring, in particular the measurement of mechanical heart activity, and includes a method and apparatus to using doppler radar to transmit an electromagnetic signal of a certain frequency into, and detect a reflected signal from out of, the chest of the individual, to processing the detected signal to produce an output signal representing the rate of change of the doppler signal associated with the reflected signal and to identify from the output signal a group of at least one characteristic point of the output signal, and further to calculate at least one parameter representative of heart activity, this calculation based on the at least one identified characteristic point. The apparatus provides a system for monitoring which is particularly suitable for use in the home and which does not require repeated use of impedance cardiograms which are inappropriate for use by untrained personnel.
Abstract:
The invention related to a modulator for a communications system. The modulator comprises a spread spectrum coder, a pulse code modulator having a signal input port connectable to a signal output port of the spread spectrum coder. The modulator performs a robust and error free modulation and coding scheme by using a modified spread spectrum scheme combined with pulse code modulation. The communication system contains a low data rate, noise robust modulation and coding scheme using a very simple transmitter. This results in a very straightforward transmitter circuit, reducing size and costs of the transmitter.
Abstract:
An electrophysiological device comprises a lead-off detector in the form of an electrical impedance detector and further a path from a supply voltage to a second voltage. The path comprises segments having electrical impedances, at least one of which is to be ascertained, and a measuring vertex. The electrical impedance detector further comprises a discriminator connected to the measuring vertex and arranged to evaluate an electrical measuring signal observed at the measuring vertex.
Abstract:
An electrophysiological device comprises a lead-off detector in the form of an electrical impedance detector and further a path from a supply voltage to a second voltage. The path comprises segments having electrical impedances, at least one of which is to be ascertained, and a measuring vertex. The electrical impedance detector further comprises a discriminator connected to the measuring vertex and arranged to evaluate an electrical measuring signal observed at the measuring vertex.
Abstract:
A battery configuration (1, 23, 24, 25, 26, 27) comprises a standard battery (AA, CR) of a standard type of battery and a tag (2, D). By inserting the battery configuration (1, 23, 24, 25, 26, 27) in any apparatus, the apparatus can be designed to communicate with a communication device (14, 25, 16, 22).