Abstract:
A device, method and system for measuring one or more ultrasound parameters of a suspension comprising particles dispersed in a liquid carrier comprising, an immersible devices, comprising, one or more ultrasonic probes; a reflector having staggered reflective; a housing having an opening into the housing to allow the suspension to flow into the space between the probe surface and the reflective surface; an ultrasound wave generator/receiver device; and a signal processing device.
Abstract:
An apparatus and methods for identifying a defect and/or an operating characteristic of a system being monitored (and/or one or more of the system's components) are described. In an embodiment, orthogonally related data monitored by two or more detectors may be fused to determine whether a component of a system is defective and/or malfunctioning. Additionally or alternatively, data from a first detector may be determined to be accurate using non-orthogonal Iy related data outputted by a second detector. Both types of determinations may be made with minimal or no false indications, which lowers the cost of operating the system being monitored. Embodiments of the invention may also be configured to forecast and/or prevent accidents and/or damage to the system being monitored by predicting whether a defect and/or a malfunction will occur
Abstract:
A system for measuring one or more ultrasound parameters of a suspension comprising particulate biomaterial dispersed in a liquid carrier comprising, a bioprocessor for processing the particulate biomaterial; an immersible device comprising an ultrasound probes and a reflector; a housing, that fixes the probe and the reflector at positions with a space in between the probe surface and the reflective surface, comprising an opening into the housing that is of a size sufficient to allow the suspension to flow into the space between the probe surface and the reflective surface; an ultrasound wave generator/receiver device; and a signal processing device.
Abstract:
An apparatus and methods for identifying a defect and/or an operating characteristic of a system being monitored (and/or one or more of the system's components) are described. In an embodiment, orthogonally related data monitored by two or more detectors may be fused to determine whether a component of a system is defective and/or malfunctioning. Additionally or alternatively, data from a first detector may be determined to be accurate using non-orthogonal Iy related data outputted by a second detector. Both types of determinations may be made with minimal or no false indications, which lowers the cost of operating the system being monitored. Embodiments of the invention may also be configured to forecast and/or prevent accidents and/or damage to the system being monitored by predicting whether a defect and/or a malfunction will occur