Abstract:
A multicore optical component and corresponding methods of converting a linearly or circularly polarized Gaussian beam of light into a radially or azimuthally polarized beam of light are provided. The multicore optical component comprises a plurality of birefringent, polarization maintaining elliptical cores. The elliptical cores collectively define an azimuthally varying distribution of major axes where the orientation of the major axis of a given elliptical core is given by φ = (180 / N) * n + θ where n is the core number and θ is any angle greater than 0°.
Abstract:
Generation of a cylindrically polarized light beam, and in particular, a hybrid-azimuthal-radial polarization beams, called HARP modes, generated from an input linearly polarized Gaussian beam using a spun optical waveguide device is taught. The HARP modes are comprised of hybrid-azimuthal polarization (HAP) and hybrid-radial polarization (HRP) superposition modes. These beams possess a non-zero local angular momentum density that is spatially varying and a zero total angular momentum.
Abstract:
A system for detecting ice formation on metal, painted metal and other material surfaces can include a transparent window (104) having an exterior surface upon which ice can form; a light source (108) and optics (116) configured and arranged to illuminate the exterior surface of the window from behind the exterior surface; and a detector (122) and optics (116) configured and arranged to receive light backscattered by the exterior surface and any ice disposed on the exterior surface and determine the thickness of the ice layer. For example, the system can be used with aircraft by placing one or more windows in the wings of the aircraft. The system is used for a novel optical method for real-time on-board detection and warning of ice formation on surfaces of airplanes, unmanned aerial vehicles (UAVs), and other vehicles and stationary structures to improve their safety and operation.
Abstract:
A system for detecting ice formation on metal, painted metal and other material surfaces can include a transparent window having an exterior surface upon which ice can form; a light source and optics configured and arranged to illuminate the exterior surface of the window from behind the exterior surface; and a detector and optics configured and arranged to receive light backscattered by the exterior surface and any ice disposed on the exterior surface and determine the thickness of the ice layer. For example, the system can be used with aircraft by placing one or more windows in the wings of the aircraft. The system is used for a novel optical method for real-time on-board detection and warning of ice formation on surfaces of airplanes, unmanned aerial vehicles (UAVs), and other vehicles and stationary structures to improve their safety and operation.