Abstract:
A method for determining spatial distribution of fluid injected into a subsurface rock formation includes injecting the fluid into the rock formation. The fluid includes therein electrically conductive solid particles dispersed in an electrolyte. An electromagnetic response of the formation is measured. The measured electromagnetic response is used to determine spatial distribution of the injected fluid.
Abstract:
A technique facilitates the detection and measurement of formation properties with various measurement devices, such as logging tools. The technique comprises locating a standard tubular (24) in a well such that the standard tubular extends to a zone (28) of interest with respect to a logging procedure. A transparent tubing (32) is attached to the standard tubing so as to extend along the zone of interest. Additionally, a protective material (42) is directed to the region adjacent the transparent tubing to protect the transparent tubing from detrimental contact with deleterious well fluid.
Abstract:
A technique utilizes the acquisition of data from desired subterranean regions via a logging system. The logging system is constructed for use in a wellbore and comprises a transmitter module having a transmitter antenna. Additionally, the logging system utilizes a receiver module spaced from the transmitter module and having a receiver antenna. The transmitter antenna and the receiver antenna are oriented to enable sensitivity in desired directions, such as ahead of the logging system.
Abstract:
Methods and apparatus for acquiring mud gas logging data, comparing the mud gas logging data to second data associated with a sidewall fluid sample measurement, and adjusting calibration data associated with a mud gas logging tool based on the comparison of the mud gas logging data and the second data associated with the sidewall fluid sample measurement.
Abstract:
A technique utilizes the acquisition of data from desired subterranean regions via a logging system. The logging system is constructed for use in a wellbore and comprises a transmitter module having a transmitter antenna. Additionally, the logging system utilizes a receiver module spaced from the transmitter module and having a receiver antenna. The transmitter antenna and the receiver antenna are oriented to enable sensitivity in desired directions, such as ahead of the logging system.
Abstract:
Various triaxial antenna designs having are provided. Some embodiments include a split-z coil that can include two axial coils with saddle coils in the x- and y-directions located therebetween. The split z-coils can function by having a combined magnetic moment similar to that of a single axial coil located between the two parts of the split z-coil. In some examples, the antenna assemblies can include a protrusion or other non-planar structure.
Abstract:
A surface seismic survey is generated or obtained from Earth's surface and is based on time in which acoustic waves are reflected to Earth's surface. One or more tools measure density and sonic velocity of a subsurface formation. An estimate of acoustic impedance is obtained from the density and the sonic velocity to generate a synthetic seismic survey. The synthetic seismic survey and the surface seismic survey are compared and/or correlated. The acoustic impedance can be iteratively estimated until the synthetic seismic survey matches the surface seismic survey. Matching the surface seismic survey with the synthetic seismic survey may ensure that the surface seismic survey may be calibrated in actual depth.
Abstract:
A surface seismic survey is generated or obtained from Earth's surface and is based on time in which acoustic waves are reflected to Earth's surface. One or more tools measure density and sonic velocity of a subsurface formation. An estimate of acoustic impedance is obtained from the density and the sonic velocity to generate a synthetic seismic survey. The synthetic seismic survey and the surface seismic survey are compared and/or correlated. The acoustic impedance can be iteratively estimated until the synthetic seismic survey matches the surface seismic survey. Matching the surface seismic survey with the synthetic seismic survey may ensure that the surface seismic survey may be calibrated in actual depth.
Abstract:
A downhole micro MR analyzer for use in a wellbore, having a micro sample tube, a micro RF coil (14) in close proximity to the micro sample tube (16), and one or more magnets (12) disposed about the micro sample tube (16) is disclosed. The micro MR analyzer can be used for nuclear magnetic resonance or electron spin resonance experiments to ascertain formation properties and chemical compositions.
Abstract:
A system and method for downhole measurement for use with drill strings to reduce the borehole gap with respect to sensors carried by the drill string. In one embodiment, the sensors (31) are mounted on a surface of the directional drilling hinged pad (40) that comes in contact with the borehole wall. The hinged pad is pressed against the borehole wall as contact is made with the wall, thereby keeping the sensors at a minimum gap with respect to the wall. In another embodiment, the hinged pad is not used for directional drilling. Therefore the hinged pad is extended outward to the wall with the minimum necessary amount of force.