Abstract:
The specification discloses a process for heating solid particulate materials. The process comprises entraining the solid particulate materials in a gas to form a stream of gas containing entrained particles and contacting this stream with a stream of hot gases. The contact between the two streams is performed in such a manner that at least a portion of the solid particulate material is heated rapidly and the heated and unheated particles enter flow patterns in which contact between the particles and with interior surfaces of a contact chamber is minimized. A heating and treatment chamber for applying the process to the treatment of solid particulate materials is disclosed. The specification also discloses a molten bath reactor combined with the chamber for heating and treating solid particulate materials. Hot off gases from the molten bath reactor can be passed through the chamber and treated particulate material from the chamber can be inserted in the molten bath reactor or partially recycled through the chamber.
Abstract:
The specification discloses a process for producing a ferroalloy in a smelting vessel. A material containing an alloying metal is injected into a molten bath contained in the vessel. A flux, a carbonaceous material and an oxygen-containing gas are also injected into the vessel. A gas which may be the oxygen-containing gas is injected into the molten bath in order to stir it. The rates of injection of the various components are controlled to achieve control of the oxidising and reducing environment within the vessel consistent with a rapide rate of injection. The material containing the alloying metal is either reduced and incorporated into the metal phase or oxidised and incorporated into the slag. Combustion gases above the molten bath are oxidised to provide further heat to the process. Alloyed metal or slag containing the alloying metal are recovered as product. The process is applicable to the production of ferroalloys such as ferrochromium, ferromanganese, ferronickel and ferrovanadium.
Abstract:
The specification discloses a process for pre-heating and pre-reducing metal oxide ores. The process comprises introducing particles of an oxide ore entrained in a gas through a port into a treatment chamber. Inside the treatment chamber the stream of entrained particles combines with a stream of high temperature reducing gas in such a way that the particles are heated rapidly and enter into flow patterns whereby contact with other particles and the internal surface of the treatment chamber is minimized. The stream of entrained particles and the stream of high temperature reducing gas are substantially co-current. A treatment chamber elongated in the direction of co-current flow is described in the specification. The hot off-gases may be derived from a molten bath reactor and comprise a high concentration of carbon monoxide and hydrogen.