A HEAT EXCHANGER WITH A SUCTION LINE HEAT EXCHANGER
    1.
    发明申请
    A HEAT EXCHANGER WITH A SUCTION LINE HEAT EXCHANGER 审中-公开
    带有换热器换热器的换热器

    公开(公告)号:WO2011023192A3

    公开(公告)日:2011-09-22

    申请号:PCT/DK2010000101

    申请日:2010-06-30

    CPC classification number: F28F9/0234 F25B40/00 F25B2400/054 F28F2260/02

    Abstract: A heat exchanger, such as an evaporator (1) or a condenser (17), for a vapour compression system (15) and a vapour compression system (15) with such a heat exchanger are disclosed. The heat exchanger comprises at least two flow tubes arranged fluidly in parallel, an inlet manifold (3) and an outlet manifold (7). Each flow tube fluidly connects the inlet manifold (3) and the outlet manifold (7), and fluid medium is distributed among the flow tubes by the inlet manifold (3). The outlet manifold (7) is provided with a suction line heat exchanger, preferably being fluidly connected in a refrigerant path of the vapour compression system (15) between a condenser (17) and an expansion device (18), in the case that the heat exchanger is an evaporator (1). The suction line heat exchanger is arranged in the outlet manifold (7) in such a manner that direct thermal contact is provided between the refrigerant delivered from the flow tubes and the suction line heat exchanger, the refrigerant, e.g., being sprayed directly onto the suction line heat exchanger. Refrigerant leaving the evaporator (1) is heated, thereby causing evaporation of possible liquid refrigerant. Thereby liquid refrigerant can be allowed to pass through some of the evaporator tubes (2) without risking damage to the compressor (16). Utilisation of the potential refrigeration capacity of the evaporator (1) is improved. Arranging the suction line heat exchanger in the outlet manifold (7) provides a compact design and eliminates the requirement for additional components.

    Abstract translation: 公开了一种用于蒸汽压缩系统(15)的蒸发器(1)或冷凝器(17)和具有这种热交换器的蒸汽压缩系统(15)的热交换器。 热交换器包括至少两个平行流体布置的流管,入口歧管(3)和出口歧管(7)。 每个流管流体地连接入口歧管(3)和出口歧管(7),并且流体介质通过入口歧管(3)分布在流管中。 出口歧管(7)设置有吸入管线热交换器,优选在冷凝器(17)和膨胀装置(18)之间的蒸气压缩系统(15)的制冷剂路径中流体连接,在这种情况下, 热交换器是蒸发器(1)。 吸入管路热交换器以这样的方式设置在出口歧管(7)中,使得在从流动管输送的制冷剂和吸入管线热交换器之间提供直接热接触,制冷剂例如直接喷射到吸力 线路换热器。 离开蒸发器(1)的制冷剂被加热,从而引起可能的液体制冷剂的蒸发。 因此,可以允许液体制冷剂通过一些蒸发器管(2),而不会对压缩机(16)造成危害。 提高了蒸发器(1)的潜在制冷量的利用率。 将排气歧管(7)中的吸入管路热交换器布置成紧凑的设计,并消除了对附加部件的要求。

    A METHOD FOR CONTROLLING A FLOW OF REFRIGERANT TO A MULTI- TUBE EVAPORATOR
    2.
    发明申请
    A METHOD FOR CONTROLLING A FLOW OF REFRIGERANT TO A MULTI- TUBE EVAPORATOR 审中-公开
    一种用于控制制冷剂流向多管蒸发器的方法

    公开(公告)号:WO2011003416A2

    公开(公告)日:2011-01-13

    申请号:PCT/DK2010000102

    申请日:2010-07-01

    Abstract: A method for controlling a flow of refrigerant to an evaporator arranged in a vapour compression system is disclosed. The vapour compression system comprises the evaporator, a compressor, a condenser, and an expansion device arranged in a refrigerant flow path. The evaporator comprises at least two evaporator tubes arranged fluidly in parallel, and a header being fluidIy connected between the expansion device and the evaporator tubes. The method comprises the steps of alternatingly allowing and preventing a flow of mixed phase refrigerant into the header. The step of allowing a flow of mixed phase refrigerant into the header is performed in such a manner that a pressure level in the header is increased significantly and abruptly. Thereby the liquid part and the gaseous part of the mixed phase refrigerant are distributed substantially homogeneously in the header. Thereby the liquid part of the refrigerant is distributed in a substantially uniform manner among the evaporator tubes, and the same filling degree is obtained in the tubes. The potential refrigeration capacity of the evaporator can be utilised to a greater extent without risking that liquid refrigerant passes the evaporator.

    Abstract translation: 公开了一种用于控制制冷剂流入蒸气压缩系统中的蒸发器的方法。 蒸汽压缩系统包括布置在制冷剂流动路径中的蒸发器,压缩机,冷凝器和膨胀装置。 蒸发器包括至少两个平行流体排列的蒸发器管,并且流体连接在膨胀装置和蒸发器管之间的集管。 该方法包括交替地允许和防止混合相制冷剂流入集管中的步骤。 以使得集流管中的压力水平显着和突然增加的方式进行允许混合相制冷剂流入集管的步骤。 因此,混合相制冷剂的液体部分和气体部分基本均匀地分布在集管中。 因此,制冷剂的液体部分在蒸发器管中以大致均匀的方式分布,并且在管中获得相同的填充度。 可以更大程度地利用蒸发器的潜在制冷能力,而不会使液体制冷剂通过蒸发器。

    POWER SAVING SYSTEM AND METHOD
    3.
    发明申请
    POWER SAVING SYSTEM AND METHOD 审中-公开
    节电系统和方法

    公开(公告)号:WO2010069316A1

    公开(公告)日:2010-06-24

    申请号:PCT/DK2009/000255

    申请日:2009-12-14

    Abstract: The present invention relates to a method and a system to reduce losses of energy due to ripples, especially at the power grid, the ripples being short term power shortages or excess power. The method is based on the idea of shutting off energy consuming devices during a period of power shortage, if their operation is not necessary, and optionally to turn on such energy consuming devices during periods of excess power, if energy may be stored in them, especially when energy may be stored as some physical parameter or variable, being a part of the operation of the energy consuming devices, such as the temperature of a freezer.

    Abstract translation: 本发明涉及一种减少由于波纹而导致的能量损失的方法和系统,特别是在电力网上,波纹是短期电力短缺或过剩功率。 该方法基于在电力短缺期间关闭能量消耗装置的想法,如果其不需要操作,并且可选地在多余功率期间打开这种能量消耗装置,如果能量可以存储在其中, 特别是当能量可以作为某些物理参数或变量存储时,作为能量消耗装置的操作的一部分,例如冷冻器的温度。

    A METHOD FOR CALIBRATING A SUPERHEAT SENSOR
    4.
    发明申请
    A METHOD FOR CALIBRATING A SUPERHEAT SENSOR 审中-公开
    一种用于校准超级传感器的方法

    公开(公告)号:WO2010025728A1

    公开(公告)日:2010-03-11

    申请号:PCT/DK2009/000198

    申请日:2009-09-04

    CPC classification number: F25B41/062 F25B49/005 F25B2600/21 F25B2700/21175

    Abstract: A method for calibrating a superheat sensor (5) for a refrigeration system is provided. The method comprises the following steps. Increasing an amount of liquid refrigerant in the evaporator (1), e.g. by increasing an opening degree of the expansion valve (3). Monitoring one or more parameters, e.g. the temperature of refrigerant leaving the evaporator (1), said parameters reflecting a superheat value of the refrigerant. Allowing the value of each of the parameter(s) to decrease. When the value(s) of the monitored parameter(s) reaches a substantially constant level, defining the superheat value corresponding to the constant level to be SH=O. The superheat sensor (5) is then calibrated in accordance with the defined SH=O level. When the parameter(s) reaches the substantially constant level it is an indication that liquid refrigerant is allowed to pass through the evaporator (1), and thereby that the superheat of the refrigerant leaving the evaporator (1) is zero. Calibration can be performed on site, and it is therefore not necessary to calibrate the sensor (5) at the manufacturing facility. Thereby it is no longer required to match calibration information with a specific sensor.

    Abstract translation: 提供了一种用于校准用于制冷系统的过热传感器(5)的方法。 该方法包括以下步骤。 增加蒸发器(1)中的液体制冷剂的量,例如 通过增大膨胀阀(3)的开度。 监测一个或多个参数,例如 离开蒸发器(1)的制冷剂的温度,所述参数反映制冷剂的过热值。 允许每个参数的值减少。 当所监视的参数的值达到基本上恒定的水平时,将对应于恒定水平的过热值定义为SH = O。 然后根据定义的SH = O电平校准过热传感器(5)。 当参数达到基本上恒定的水平时,表明允许液体制冷剂通过蒸发器(1),从而使离开蒸发器(1)的制冷剂的过热为零。 校准可以在现场执行,因此无需在生产设备中校准传感器(5)。 因此,不再需要将校准信息与特定传感器相匹配。

    AN EXPANSION VALVE WITH A DISTRIBUTOR
    5.
    发明申请

    公开(公告)号:WO2008154919A3

    公开(公告)日:2008-12-24

    申请号:PCT/DK2008/000219

    申请日:2008-06-17

    Abstract: An expansion valve (1) comprising an inlet opening (2) and a distributor (4) being arranged to distribute fluid medium received from the inlet opening to at least two parallel flow paths (3). At least two outlet openings (3) are adapted to deliver fluid in an at least partially gaseous state, and each outlet opening is fluidly connected to one of the parallel flow paths. A first valve part (7) and a second valve part (5) are arranged movably relative to each other in such a manner that the mutual position of the first valve part and the second valve part determines the opening degree of the expansion valve. Since the distributor (4) forms part of the expansion valve, it distributes the fluid medium to the parallel flow paths prior to or during expansion of the fluid medium, i.e. while the fluid medium is in a substantially liquid state. This makes it easier to control the distribution of fluid medium to the parallel flow paths in a uniform manner.

    A VAPOUR COMPRESSION SYSTEM WITH SPLIT EVAPORATOR
    6.
    发明申请
    A VAPOUR COMPRESSION SYSTEM WITH SPLIT EVAPORATOR 审中-公开
    具有分离蒸发器的蒸汽压缩系统

    公开(公告)号:WO2011072679A1

    公开(公告)日:2011-06-23

    申请号:PCT/DK2010/000100

    申请日:2010-06-29

    CPC classification number: F25B5/02 F25B1/10 F25B39/02 F28D1/0417 F28D1/0435

    Abstract: A vapour compression system (1) comprising a compressor (2), a condenser (3), an expansion device (4) and an evaporator (5) arranged along a refrigerant path is disclosed. The evaporator (5) comprises at least two evaporator paths (5a, 5b, 5c, 5d) arranged fluidly in parallel between the expansion device (4) and the compressor (2). Each evaporator path (5a, 5b, 5c, 5d) is fluidly connected to the compressor (2) via a separate suction line (7a, 7b, 7c), and the suction pressure in each of the suction lines (7a, 7b, 7c) is distinct from the suction pressure in each of the other suction line(s) (7a, 7b, 7c). The separate suction lines (7a, 7b, 7c) allows the evaporator paths (5a, 5b, 5c, 5d) to be operated at different evaporator temperatures and pressures. Thereby a large temperature change of a secondary flow (6) across the evaporator (5) can be obtained while the suction pressure of a part of the mass flow is kept at a high level. The work required by the compressor (2) is reduced and energy is conserved.

    Abstract translation: 公开了一种蒸气压缩系统(1),其包括沿制冷剂路径布置的压缩机(2),冷凝器(3),膨胀装置(4)和蒸发器(5)。 蒸发器(5)包括至少两个平行布置在膨胀装置(4)和压缩机(2)之间的蒸发器路径(5a,5b,5c,5d)。 每个蒸发器路径(5a,5b,5c,5d)经由单独的吸入管线(7a,7b,7c)与压缩机(2)流体连接,吸入管线(7a,7b,7c) )与其他吸入管线(7a,7b,7c)中的每一个的吸入压力不同。 分离的吸入管线(7a,7b,7c)允许蒸发器路径(5a,5b,5c,5d)在不同的蒸发器温度和压力下操作。 从而可以获得横跨蒸发器(5)的二次流(6)的大的温度变化,同时将质量流的一部分的吸入压力保持在高水平。 压缩机(2)所需的工作减少,节能。

    A SUPERHEAT SENSOR
    7.
    发明申请
    A SUPERHEAT SENSOR 审中-公开
    超级传感器

    公开(公告)号:WO2010020249A1

    公开(公告)日:2010-02-25

    申请号:PCT/DK2009/000182

    申请日:2009-08-18

    CPC classification number: F25B49/00 F25B2700/21

    Abstract: A superheat sensor (1) for sensing superheat of a fluid flowing in a flow channel (3) is disclosed. The sensor (1) comprises a flexible wall defining an interface between an inner cavity (5) having a charge fluid (6) arranged therein and the flow channel (3). The flexible wall is arranged in the flow channel (3) in thermal contact with the fluid flowing therein, and the flexible wall is adapted to conduct heat between the flow channel (3) and the inner cavity (5). Thereby the temperature of the charge fluid (6) adapts to the temperature of the fluid flowing in the flow channel (3), and the pressure in the inner cavity (5) is determined by this temperature. A first wall part (7, 14) and a second wall part (9, 16) are arranged at a variable distance from each other, said distance being defined by a differential pressure between the pressure of the charge fluid (6) and the pressure of the fluid flowing in the flow channel (3), i.e. depending on the pressure and the temperature of the fluid flowing in the flow channel (3), and thereby the superheat of the fluid. A distance sensor, e.g. comprising a permanent magnet (8) and a Hall sensor (10), measures the distance between the wall parts, and the superheat is calculated from the measured distance. The sensor (1) is suitable for use in a refrigeration system. The sensor (1) is mechanically simple and capable of determining the superheat by measuring only one parameter.

    Abstract translation: 公开了一种用于感测在流动通道(3)中流动的流体的过热的过热传感器(1)。 传感器(1)包括限定在其中布置有充电流体(6)的内腔(5)和流动通道(3)之间的界面的柔性壁。 柔性壁布置在流动通道(3)中,与流过其中的流体热接触,柔性壁适于在流动通道(3)和内腔(5)之间传导热量。 由此,充电流体(6)的温度适应于在流动通道(3)中流动的流体的温度,并且内腔(5)中的压力由该温度确定。 第一壁部分(7,14)和第二壁部分(9,16)以彼此可变的距离布置,所述距离由加压流体(6)的压力和压力 在流动通道(3)中流动的流体,即取决于在流动通道(3)中流动的流体的压力和温度,从而流体的过热。 距离传感器,例如 包括永磁体(8)和霍尔传感器(10),测量壁部之间的距离,并根据测量的距离计算过热度。 传感器(1)适用于制冷系统。 传感器(1)机械简单,能够通过仅测量一个参数来确定过热。

    CONTROL OF A SYSTEM WITH A LARGE THERMAL CAPACITY
    8.
    发明申请
    CONTROL OF A SYSTEM WITH A LARGE THERMAL CAPACITY 审中-公开
    控制一个具有较大热容量的系统

    公开(公告)号:WO2007090405A3

    公开(公告)日:2007-10-18

    申请号:PCT/DK2007000064

    申请日:2007-02-08

    CPC classification number: F24D19/1009 F24D3/12 G05D23/1919

    Abstract: The invention provides a method and a system for controlling floor heating or climate regulating systems with long time constants. According to the invention, a flow of a fluid is provided through the floor or through a similar medium with large thermal inertia. An induced heat is determined by adding up a plurality of differences between an inlet temperature of the fluid when it enters the medium and an outlet temperature of the fluid when it leaves the medium. The temperatures are sampled with a fixed sampling time and within a fixed period of time, and a corresponding change in temperature of the medium over the fixed period of time is determined. In the future, the temperature of that medium is controlled by use of a ratio between the induced heat and the change in temperature.

    Abstract translation: 本发明提供了一种用于控制具有长时间常数的地板加热或气候调节系统的方法和系统。 根据本发明,通过地板或通过具有大的热惯性的类似介质提供流体流。 通过在流体进入介质时流体的入口温度与流体离开介质时的流体出口温度之间的多个差值相加来确定诱导热量。 在固定的采样时间内和在固定的时间段内对温度进行采样,并且确定介质在固定的时间段内的相应的温度变化。 将来,通过使用感应热与温度变化之间的比率来控制该介质的温度。

    CONTROL OF A SYSTEM WITH A LARGE THERMAL CAPACITY
    9.
    发明申请
    CONTROL OF A SYSTEM WITH A LARGE THERMAL CAPACITY 审中-公开
    具有大的热容量的系统的控制

    公开(公告)号:WO2007090405A2

    公开(公告)日:2007-08-16

    申请号:PCT/DK2007/000064

    申请日:2007-02-08

    CPC classification number: F24D19/1009 F24D3/12 G05D23/1919

    Abstract: The invention provides a method and a system for controlling floor heating or climate regulating systems with long time constants. According to the invention, a flow of a fluid is provided through the floor or through a similar medium with large thermal inertia. An induced heat is determined by adding up a plurality of differences between an inlet temperature of the fluid when it enters the medium and an outlet temperature of the fluid when it leaves the medium. The temperatures are sampled with a fixed sampling time and within a fixed period of time, and a corresponding change in temperature of the medium over the fixed period of time is determined. In the future, the temperature of that medium is controlled by use of a ratio between the induced heat and the change in temperature.

    Abstract translation: 本发明提供一种用于控制具有长时间常数的地板采暖或气候调节系统的方法和系统。 根据本发明,通过地板或通过具有大热惯性的类似介质提供流体流。 通过在流体进入介质时流体的入口温度与流体离开介质时的出口温度之间相加多个差异来确定感应热。 以固定的采样时间和固定的时间段对采集的温度进行采样,确定介质在固定时间段内相应的温度变化。 将来,通过使用感应的热量和温度变化之间的比率来控制该介质的温度。

    A METHOD FOR CONTROLLING TEMPERATURE IN A REFRIGERATION SYSTEM
    10.
    发明申请
    A METHOD FOR CONTROLLING TEMPERATURE IN A REFRIGERATION SYSTEM 审中-公开
    一种控制制冷系统温度的方法

    公开(公告)号:WO2006063591A3

    公开(公告)日:2006-08-10

    申请号:PCT/DK2005000791

    申请日:2005-12-14

    Abstract: A method for controlling a temperature in a refrigeration system using a quality decay value expressing an expected decay rate in quality of the products being refrigerated, and which depends on the temperature of air present in the refrigeration system. The quality decay value is obtained using a mathematical model reflecting one or more physical and/or biological processes in the products. Prevents or reduces the quality degradation of the products in terms of shelf life, appearance or tastiness. Furthermore, a method for controlling the temperature in such a way that effects of scheduled events, such as temperature increase during defrosts, can be compensated prior to the event.

    Abstract translation: 使用表示冷冻产品的质量的预期衰减率的质量衰减值来控制制冷系统中的温度的方法,并且这取决于存在于制冷系统中的空气的温度。 使用反映产品中的一种或多种物理和/或生物过程的数学模型获得质量衰减值。 防止或降低产品在保质期,外观或味觉方面的质量下降。 此外,一种用于控制温度的方法,使得在事件发生之前可以补偿诸如除霜期间的温度升高等预定事件的影响。

Patent Agency Ranking