Abstract:
A heat exchanger, such as an evaporator (1) or a condenser (17), for a vapour compression system (15) and a vapour compression system (15) with such a heat exchanger are disclosed. The heat exchanger comprises at least two flow tubes arranged fluidly in parallel, an inlet manifold (3) and an outlet manifold (7). Each flow tube fluidly connects the inlet manifold (3) and the outlet manifold (7), and fluid medium is distributed among the flow tubes by the inlet manifold (3). The outlet manifold (7) is provided with a suction line heat exchanger, preferably being fluidly connected in a refrigerant path of the vapour compression system (15) between a condenser (17) and an expansion device (18), in the case that the heat exchanger is an evaporator (1). The suction line heat exchanger is arranged in the outlet manifold (7) in such a manner that direct thermal contact is provided between the refrigerant delivered from the flow tubes and the suction line heat exchanger, the refrigerant, e.g., being sprayed directly onto the suction line heat exchanger. Refrigerant leaving the evaporator (1) is heated, thereby causing evaporation of possible liquid refrigerant. Thereby liquid refrigerant can be allowed to pass through some of the evaporator tubes (2) without risking damage to the compressor (16). Utilisation of the potential refrigeration capacity of the evaporator (1) is improved. Arranging the suction line heat exchanger in the outlet manifold (7) provides a compact design and eliminates the requirement for additional components.
Abstract:
A method for controlling a flow of refrigerant to an evaporator arranged in a vapour compression system is disclosed. The vapour compression system comprises the evaporator, a compressor, a condenser, and an expansion device arranged in a refrigerant flow path. The evaporator comprises at least two evaporator tubes arranged fluidly in parallel, and a header being fluidIy connected between the expansion device and the evaporator tubes. The method comprises the steps of alternatingly allowing and preventing a flow of mixed phase refrigerant into the header. The step of allowing a flow of mixed phase refrigerant into the header is performed in such a manner that a pressure level in the header is increased significantly and abruptly. Thereby the liquid part and the gaseous part of the mixed phase refrigerant are distributed substantially homogeneously in the header. Thereby the liquid part of the refrigerant is distributed in a substantially uniform manner among the evaporator tubes, and the same filling degree is obtained in the tubes. The potential refrigeration capacity of the evaporator can be utilised to a greater extent without risking that liquid refrigerant passes the evaporator.
Abstract:
The present invention relates to a method and a system to reduce losses of energy due to ripples, especially at the power grid, the ripples being short term power shortages or excess power. The method is based on the idea of shutting off energy consuming devices during a period of power shortage, if their operation is not necessary, and optionally to turn on such energy consuming devices during periods of excess power, if energy may be stored in them, especially when energy may be stored as some physical parameter or variable, being a part of the operation of the energy consuming devices, such as the temperature of a freezer.
Abstract:
A method for calibrating a superheat sensor (5) for a refrigeration system is provided. The method comprises the following steps. Increasing an amount of liquid refrigerant in the evaporator (1), e.g. by increasing an opening degree of the expansion valve (3). Monitoring one or more parameters, e.g. the temperature of refrigerant leaving the evaporator (1), said parameters reflecting a superheat value of the refrigerant. Allowing the value of each of the parameter(s) to decrease. When the value(s) of the monitored parameter(s) reaches a substantially constant level, defining the superheat value corresponding to the constant level to be SH=O. The superheat sensor (5) is then calibrated in accordance with the defined SH=O level. When the parameter(s) reaches the substantially constant level it is an indication that liquid refrigerant is allowed to pass through the evaporator (1), and thereby that the superheat of the refrigerant leaving the evaporator (1) is zero. Calibration can be performed on site, and it is therefore not necessary to calibrate the sensor (5) at the manufacturing facility. Thereby it is no longer required to match calibration information with a specific sensor.
Abstract:
An expansion valve (1) comprising an inlet opening (2) and a distributor (4) being arranged to distribute fluid medium received from the inlet opening to at least two parallel flow paths (3). At least two outlet openings (3) are adapted to deliver fluid in an at least partially gaseous state, and each outlet opening is fluidly connected to one of the parallel flow paths. A first valve part (7) and a second valve part (5) are arranged movably relative to each other in such a manner that the mutual position of the first valve part and the second valve part determines the opening degree of the expansion valve. Since the distributor (4) forms part of the expansion valve, it distributes the fluid medium to the parallel flow paths prior to or during expansion of the fluid medium, i.e. while the fluid medium is in a substantially liquid state. This makes it easier to control the distribution of fluid medium to the parallel flow paths in a uniform manner.
Abstract:
A vapour compression system (1) comprising a compressor (2), a condenser (3), an expansion device (4) and an evaporator (5) arranged along a refrigerant path is disclosed. The evaporator (5) comprises at least two evaporator paths (5a, 5b, 5c, 5d) arranged fluidly in parallel between the expansion device (4) and the compressor (2). Each evaporator path (5a, 5b, 5c, 5d) is fluidly connected to the compressor (2) via a separate suction line (7a, 7b, 7c), and the suction pressure in each of the suction lines (7a, 7b, 7c) is distinct from the suction pressure in each of the other suction line(s) (7a, 7b, 7c). The separate suction lines (7a, 7b, 7c) allows the evaporator paths (5a, 5b, 5c, 5d) to be operated at different evaporator temperatures and pressures. Thereby a large temperature change of a secondary flow (6) across the evaporator (5) can be obtained while the suction pressure of a part of the mass flow is kept at a high level. The work required by the compressor (2) is reduced and energy is conserved.
Abstract:
A superheat sensor (1) for sensing superheat of a fluid flowing in a flow channel (3) is disclosed. The sensor (1) comprises a flexible wall defining an interface between an inner cavity (5) having a charge fluid (6) arranged therein and the flow channel (3). The flexible wall is arranged in the flow channel (3) in thermal contact with the fluid flowing therein, and the flexible wall is adapted to conduct heat between the flow channel (3) and the inner cavity (5). Thereby the temperature of the charge fluid (6) adapts to the temperature of the fluid flowing in the flow channel (3), and the pressure in the inner cavity (5) is determined by this temperature. A first wall part (7, 14) and a second wall part (9, 16) are arranged at a variable distance from each other, said distance being defined by a differential pressure between the pressure of the charge fluid (6) and the pressure of the fluid flowing in the flow channel (3), i.e. depending on the pressure and the temperature of the fluid flowing in the flow channel (3), and thereby the superheat of the fluid. A distance sensor, e.g. comprising a permanent magnet (8) and a Hall sensor (10), measures the distance between the wall parts, and the superheat is calculated from the measured distance. The sensor (1) is suitable for use in a refrigeration system. The sensor (1) is mechanically simple and capable of determining the superheat by measuring only one parameter.
Abstract:
The invention provides a method and a system for controlling floor heating or climate regulating systems with long time constants. According to the invention, a flow of a fluid is provided through the floor or through a similar medium with large thermal inertia. An induced heat is determined by adding up a plurality of differences between an inlet temperature of the fluid when it enters the medium and an outlet temperature of the fluid when it leaves the medium. The temperatures are sampled with a fixed sampling time and within a fixed period of time, and a corresponding change in temperature of the medium over the fixed period of time is determined. In the future, the temperature of that medium is controlled by use of a ratio between the induced heat and the change in temperature.
Abstract:
The invention provides a method and a system for controlling floor heating or climate regulating systems with long time constants. According to the invention, a flow of a fluid is provided through the floor or through a similar medium with large thermal inertia. An induced heat is determined by adding up a plurality of differences between an inlet temperature of the fluid when it enters the medium and an outlet temperature of the fluid when it leaves the medium. The temperatures are sampled with a fixed sampling time and within a fixed period of time, and a corresponding change in temperature of the medium over the fixed period of time is determined. In the future, the temperature of that medium is controlled by use of a ratio between the induced heat and the change in temperature.
Abstract:
A method for controlling a temperature in a refrigeration system using a quality decay value expressing an expected decay rate in quality of the products being refrigerated, and which depends on the temperature of air present in the refrigeration system. The quality decay value is obtained using a mathematical model reflecting one or more physical and/or biological processes in the products. Prevents or reduces the quality degradation of the products in terms of shelf life, appearance or tastiness. Furthermore, a method for controlling the temperature in such a way that effects of scheduled events, such as temperature increase during defrosts, can be compensated prior to the event.