Abstract:
A technique includes digitally generating orthogonal modulated signals, each of which has spectral energy that is generally centered at an intermediate frequency. The orthogonal modulated signals are frequency translated to produce translated signals, each of which has spectral energy that is generally centered about a second frequency that is higher than the intermediate frequency. The translated signals are combined to generate a modulated signal.
Abstract:
A transceiver includes a processor and an analog-to-digital converter. The processor is adapted to in a transmit mode of the transceiver, generate a modulated signal in response to a first digital signal. In a receive mode of the transceiver, the processor is adapted to generate a demodulated signal in response to a second digital signal. The analog-to-digital converter provides the first digital signal in the transmit mode and provides the second digital signal in the receive mode.
Abstract:
A transceiver includes a processor and an analog-to-digital converter. The processor is adapted to in a transmit mode of the transceiver, generate a modulated signal in response to a first digital signal. In a receive mode of the transceiver, the processor is adapted to generate a demodulated signal in response to a second digital signal. The analog-to-digital converter provides the first digital signal in the transmit mode and provides the second digital signal in the receive mode.
Abstract:
A technique includes digitally generating orthogonal modulated signals, each of which has spectral energy that is generally centered at an intermediate frequency. The orthogonal modulated signals are frequency translated to produce translated signals, each of which has spectral energy that is generally centered about a second frequency that is higher than the intermediate frequency. The translated signals are combined to generate a modulated signal.