Abstract:
The invention is directed to polypeptides having a glucosidase activity, including an alpha-glucosidase activity, polynucleotides encoding the polypeptides, and methods for making and using these polynucleotides and polypeptides. In one aspect, the polypeptides of the invention are used as alpha-glucosidases to catalyze the hydrolysis of starch into sugars, e.g., to convert liquefied starch to glucose. In one aspect, the polypeptides of the invention can catalyze the hydrolysis of both alpha-(1,4) and alpha-(1,6) glucose linkages. In one aspect, the polypeptides of the invention can catalyze the hydrolysis of both malto-oligosaccharides and liquefied starch.
Abstract:
The invention is directed to polypeptides having a glucosidase activity, including an alpha-glucosidase activity, polynucleotides encoding the polypeptides, and methods for making and using these polynucleotides and polypeptides. In one aspect, the polypeptides of the invention are used as alpha-glucosidases to catalyze the hydrolysis of starch into sugars, e.g., to convert liquefied starch to glucose. In one aspect, the polypeptides of the invention can catalyze the hydrolysis of both alpha-(1,4) and alpha-(1,6) glucose linkages. In one aspect, the polypeptides of the invention can catalyze the hydrolysis of both malto-oligosaccharides and liquefied starch.
Abstract:
This invention provides amidases, polynucleotides encoding the amidases, methods of making and using these polynucleotides and polypeptides. In one aspect, the invention provides enzymes having secondary amidase activity, e.g., having activity in the hydrolysis of amides, including enzymes having peptidase, protease and/or hydantoinase activity. In alternative aspects, the enzymes of the invention can be used to used to increase flavor in food (e.g., enzyme ripened cheese), promote bacterial and fungal killing, modify and de-protect fine chemical intermediates, synthesize peptide bonds, carry out chiral resolutions, hydrolyze Cephalosporin C. The enzymes of the invention can be used to generate 7aminocephalosporanic acid (7-ACA) and semi-synthetic cephalosporin antibiotics, including caphalothin, cephaloridine and cefuroxime. The enzymes of the invention can be used as antimicrobial agents, e.g., as cell wall hydrolytic agents. The invention also provides a fluorescent amidase substrate comprising 7-(E-D-2-aminoadipoylamido)-4-methylcoumarin.
Abstract:
The invention provides a genome of the hyperthermophile Nanoarchaeum equitans, polypeptides, including enzymes, structural protein and binding proteins, derived from this genome, polynucleotides encoding these polypeptides, methods of making and using these polynucleotides and polypeptides. The invention also provides isolated hyperthermophile Nanoarchaeum equitans .
Abstract:
This invention provides amidases, polynucleotides encoding the amidases, methods of making and using these polynucleotides and polypeptides. In one aspect, the invention provides enzymes having secondary amidase activity, e.g., having activity in the hydrolysis of amides, including enzymes having peptidase, protease and/or hydantoinase activity. In alternative aspects, the enzymes of the invention can be used to used to increase flavor in food (e.g., enzyme ripened cheese), promote bacterial and fungal killing, modify and de-protect fine chemical intermediates, synthesize peptide bonds, carry out chiral resolutions, hydrolyze Cephalosporin C. The enzymes of the invention can be used to generate 7aminocephalosporanic acid (7-ACA) and semi-synthetic cephalosporin antibiotics, including caphalothin, cephaloridine and cefuroxime. The enzymes of the invention can be used as antimicrobial agents, e.g., as cell wall hydrolytic agents. The invention also provides a fluorescent amidase substrate comprising 7-(E-D-2-aminoadipoylamido)-4-methylcoumarin.
Abstract:
The invention provides a genome of the hyperthermophile Nanoarchaeum equitans, polypeptides, including enzymes, structural protein and binding proteins, derived from this genome, polynucleotides encoding these polypeptides, methods of making and using these polynucleotides and polypeptides. The invention also provides isolated hyperthermophile Nanoarchaeum equitans .
Abstract:
This invention provides amidases, polynucleotides encoding the amidases, methods of making and using these polynucleotides and polypeptides. In one aspect, the invention provides enzymes having secondary amidase activity, e.g., having activity in the hydrolysis of amides, including enzymes having peptidase, protease and/or hydantoinase activity. In alternative aspects, the enzymes of the invention can be used to used to increase flavor in food (e.g., enzyme ripened cheese), promote bacterial and fungal killing, modify and de-protect fine chemical intermediates, synthesize peptide bonds, carry out chiral resolutions, hydrolyze Cephalosporin C. The enzymes of the invention can be used to generate 7-aminocephalosporanic acid (7-ACA) and semi-synthetic cephalosporin antibiotics, including caphalothin, cephaloridine and cefuroxime. The enzymes of the invention can be used as antimicrobial agents, e.g., as cell wall hydrolytic agents. The invention also provides a fluorescent amidase substrate comprising 7-(ε-D-2-aminoadipoyladipoylamido)-4-methylcoumarin.
Abstract:
This invention provides amidases, polynucleotides encoding the amidases, methods of making and using these polynucleotides and polypeptides. In one aspect, the invention provides enzymes having secondary amidase activity, e.g., having activity in the hydrolysis of amides, including enzymes having peptidase, protease and/or hydantoinase activity. In alternative aspects, the enzymes of the invention can be used to used to increase flavor in food (e.g., enzyme ripened cheese), promote bacterial and fungal killing, modify and de-protect fine chemical intermediates, synthesize peptide bonds, carry out chiral resolutions, hydrolyze Cephalosporin C. The enzymes of the invention can be used to generate 7-aminocephalosporanic acid (7-ACA) and semi-synthetic cephalosporin antibiotics, including caphalothin, cephaloridine and cefuroxime. The enzymes of the invention can be used as antimicrobial agents, e.g., as cell wall hydrolytic agents. The invention also provides a fluorescent amidase substrate comprising 7-(ε-D-2-aminoadipoyladipoylamido)-4-methylcoumarin.