Abstract:
A selected electrolyte composition comprising aluminum and a lower molecular weight fluorinated organic anion which can be an ionic liquid. The fluorinated organic anion can be bis(trifluorosulfonyl)imide. The composition can be used in electroplating or batteries. A preferred example is use of Al(NTf 2 ) 3 with one or more other moieties. A moisture insensitive electroplating method comprising: providing at least one aluminum electroplating system comprising at least one electroplating composition which is adapted for electroplating aluminum onto a substrate; electroplating aluminum onto the substrate from the at least one electroplating composition comprising: (i) aluminum cation, and (ii) at least one anion which is a fluorinated organic anion having molecular weight of 750 g/mol or less. Optionally, the aluminum cation is in, or is not in, aluminate form. Use of highly reactive aluminum compounds such as aluminum halides can be avoided.
Abstract:
The present invention provides a solid-state sodium-based secondary cell (or rechargeable battery) (10). The secondary cell (10) comprises a solid sodium metal negative electrode (20) that is disposed in a non-aqueous negative electrolyte solution (25) that includes an ionic liquid. Additionally, the cell (10) comprises a positive electrode (35) that is disposed in a positive electrolyte solution (40). A sodium ion conductive electrolyte membrane (45) separates the negative electrolyte solution (25) from the positive electrolyte solution (40). The cell may operate at room temperature. Additionally, where the negative electrolyte solution (25) contains the ionic liquid, the ionic liquid may impede dendrite formation on the surface of the negative electrode (20) as the cell (10) is recharged and sodium ions are reduced onto the negative electrode (20).
Abstract:
A lithium-sulfur battery (100) is disclosed in one embodiment of the invention as including an anode (102) containing lithium and a cathode (104) comprising elemental sulfur. The cathode may include at least one solvent selected to at least partially dissolve the elemental sulfur and Li2S x . A substantially non-porous lithium-ion-conductive membrane (106) is provided between the anode (102) and the cathode (104) to keep sulfur or other reactive species from migrating therebetween. In certain embodiments, the lithium-sulfur battery (100) may include a separator between the anode (102) and the non-porous lithium-ion-conductive membrane (106). This separator may prevent the lithium in the anode (102) from reacting with the non-porous lithium-ion-conductive membrane (106). In certain embodiments, the separator is a porous separator infiltrated with a lithium-ion-conductive electrolyte.
Abstract:
The present invention relates to polypeptides to be administered especially to humans and in particular for therapeutic use. The polypeptides are modified polypeptides whereby the modification results in a reduced propensity for the polypeptide to elicit an immune response upon administration to the human subject. The invention in particular to the modification of human interferon alpha and specifically interferon alpha 2(INFα2) to result in proteins that are substantially non-immunogenic or less immunogenic than any non-modified counterpart when use in vivo .
Abstract:
The present invention relates to polypeptides to be administered especially to humans and in particular for therapeutic use. The polypeptides are modified polypeptides whereby the modification results in a reduced propensity for the polypeptide to elicit an immune response upon administration to the human subject. The invention in particular to the modification of human interferon alpha and specifically interferon alpha 2(INFα2) to result in proteins that are substantially non-immunogenic or less immunogenic than any non-modified counterpart when use in vivo .
Abstract:
Provided are site specific chemically modified nanopore devices and methods for manufacturing and using them. Site specific chemically modified nanopore devices can be used for analyte sensing and analysis, for example.
Abstract:
The present invention provides a solid-state sodium-based secondary cell (or rechargeable battery) (10). The secondary cell (10) comprises a solid sodium metal negative electrode (20) that is disposed in a non-aqueous negative electrolyte solution (25) that includes an ionic liquid. Additionally, the cell (10) comprises a positive electrode (35) that is disposed in a positive electrolyte solution (40). A sodium ion conductive electrolyte membrane (45) separates the negative electrolyte solution (25) from the positive electrolyte solution (40). The cell may operate at room temperature. Additionally, where the negative electrolyte solution (25) contains the ionic liquid, the ionic liquid may impede dendrite formation on the surface of the negative electrode (20) as the cell (10) is recharged and sodium ions are reduced onto the negative electrode (20).
Abstract:
A sodium-sulfur battery (100) is disclosed in one embodiment of the invention as including an anode (102) containing sodium and a cathode (104) comprising elemental sulfur. The cathode (104) may include at least one solvent selected to at least partially dissolve the elemental sulfur and Na 2 S x . A substantially non-porous sodium-ion-conductive membrane (106) is provided between the anode (102) and the cathode (104) to keep sulfur or other reactive species from migrating therebetween. In certain embodiments, the sodium-sulfur battery (100) may include a separator between the anode (102) and the non-porous sodium-ion-conductive membrane (106). This separator may prevent the sodium in the anode (102) from reacting with the non-porous sodium-ion-conductive membrane (106). In certain embodiments, the separator is a porous separator infiltrated with a sodium-ion-conductive electrolyte.
Abstract:
A sodium-sulfur battery (100) is disclosed in one embodiment of the invention as including an anode (102) containing sodium and a cathode (104) comprising elemental sulfur. The cathode (104) may include at least one solvent selected to at least partially dissolve the elemental sulfur and Na2Sx. A substantially non-porous sodium-ion-conductive membrane (106) is provided between the anode (102) and the cathode (104) to keep sulfur or other reactive species from migrating therebetween. In certain embodiments, the sodium-sulfur battery (100) may include a separator between the anode (102) and the non-porous sodium-ion-conductive membrane (106). This separator may prevent the sodium in the anode (102) from reacting with the non-porous sodium-ion-conductive membrane (106). In certain embodiments, the separator is a porous separator infiltrated with a sodium-ion-conductive electrolyte.
Abstract:
The invention concerns human thrombopoietin and in particular modified forms of thrombopoietin (TPO) with improved properties. The improved proteins contain amino acid substitutions at specific positions within the TPO molecule. The invention provides modified TPO molecules, preferably fusion proteins comprising immunoglobulin constant regions and modified human TPO, with improved biological activity concomitant with reduced immunogenic potential in the protein. The improved proteins are intended for therapeutic use in the treatment of diseases in humans.