Abstract:
A biopsy device assembly performs a biopsy of an anatomical tissue of a patient. The biopsy device assembly includes a housing and a biopsy device that extends out of the housing and that collects and cuts anatomical tissue from the patient. The biopsy device assembly further includes a hemostatic agent removably housed in the biopsy device. Moreover, the assembly includes an actuator assembly that moves the biopsy device relative to the housing from a first position to an extended position such that the biopsy device collects and cuts the anatomical tissue from the patient. The actuator assembly also retracts the biopsy device relative to the housing toward a retracted position. Furthermore, the assembly includes an ejection device that ejects the hemostatic agent from the biopsy device as the actuator assembly retracts the biopsy device toward the retracted position.
Abstract:
The present invention provides a system for determining blood flow rate in a vessel which communicates blood between two locations of a patient, the system comprising: a conduit in fluid communication with the vessel; at least one sensor in communication with the vessel for determining differential blood pressure (? P) between two or more locations within the vessel; and a processor operably connected to the at least one sensor for processing the ? P to obtain blood flow rate within the vessel. A method for determining blood flow rate in a vessel which communicates blood between two locations of a patient, the method comprising: diverting blood from the vessel at a diversion point to obtain a flow of diverted blood in a conduit; determining differential blood pressure (? P) of the diverted blood through the conduit; and processing the ? P to obtain blood flow rate within the vessel.
Abstract:
An optimized elastic modulus reconstruction procedure can estimate the nonlinear elastic properties of vascular wall from intramural strain and pulse wave velocity (PWV) measurements. A noninvasive free-hand ultrasound scanning procedure is used to apply external force, comparable to the force in measuring a subject's blood pressure, to achieve higher strains by equalizing the internal arterial baseline pressure. PWV is estimated at the same location where intramural strain is measured. The reconstructed elastic modulus is optimized and the arterial elastic modulus can be determined and monitored using a simple dual elastic modulus reconstruction procedure.
Abstract:
A biopsy device assembly performs a biopsy of an anatomical tissue of a patient. The biopsy device assembly includes a housing and a biopsy device that extends out of the housing and that collects and cuts anatomical tissue from the patient. The biopsy device assembly further includes a hemostatic agent removably housed in the biopsy device. Moreover, the assembly includes an actuator assembly that moves the biopsy device relative to the housing from a first position to an extended position such that the biopsy device collects and cuts the anatomical tissue from the patient. The actuator assembly also retracts the biopsy device relative to the housing toward a retracted position. Furthermore, the assembly includes an ejection device that ejects the hemostatic agent from the biopsy device as the actuator assembly retracts the biopsy device toward the retracted position.
Abstract:
The present invention provides a system for determining blood flow rate in a vessel which communicates blood between two locations of a patient, the system comprising: a conduit in fluid communication with the vessel; at least one sensor in communication with the vessel for determining differential blood pressure (? P) between two or more locations within the vessel; and a processor operably connected to the at least one sensor for processing the ? P to obtain blood flow rate within the vessel. A method for determining blood flow rate in a vessel which communicates blood between two locations of a patient, the method comprising: diverting blood from the vessel at a diversion point to obtain a flow of diverted blood in a conduit; determining differential blood pressure (? P) of the diverted blood through the conduit; and processing the ? P to obtain blood flow rate within the vessel.
Abstract:
An optimized elastic modulus reconstruction procedure can estimate the nonlinear elastic properties of vascular wall from intramural strain and pulse wave velocity (PWV) measurements. A noninvasive free-hand ultrasound scanning procedure is used to apply external force, comparable to the force in measuring a subject's blood pressure, to achieve higher strains by equalizing the internal arterial baseline pressure. PWV is estimated at the same location where intramural strain is measured. The reconstructed elastic modulus is optimized and the arterial elastic modulus can be determined and monitored using a simple dual elastic modulus reconstruction procedure.