Abstract:
One embodiment provides a media access control (MAC) module facilitating operations of an Ethernet passive optical network (EPON). The MAC module includes a frame formatter configured to generate a MAC control frame. The generated MAC control frame includes at least one of: an organizationally unique identifier (OUI) field, an OUI-specific operation code (opcode) field, and a number of fields associated with the OUI-specific opcode. Transmission of the MAC control frame facilitates realization of an EPON function based on the fields associated with the OUI-specific opcode.
Abstract:
One embodiment of the present invention provides a system that facilitates multiplexing low-speed Ethernet channels onto a high-speed channel. During operation, the system receives a number of low-speed Ethernet channels. Next, the system derives N bit streams from the number of low-speed Ethernet channels, and feeds each bit stream to an input of a serializer, which is conventionally used to serialize bits from a single channel. Each input of the serializer comprises one bit of an N -bit-wide parallel input bus, and the data rate of the serializer output matches the data rate of the high-speed channel. The system then transmits the output of the serializer onto the high-speed channel.
Abstract:
One embodiment provides a system for performance monitoring in a passive optic network (PON). The system includes an optical line terminal (OLT) and an optical network unit (ONU). The OLT includes an optical transceiver configured to transmit optical signals to and receive optical signals from the ONU, and a performance monitoring mechanism configured to monitor performance of the PON based on received optical signals.
Abstract:
The present invention provides a small form factor, pluggable ONU, which includes a bi-directional optical transceiver configured to transmit optical signals to and receive optical signals from an OLT. The ONU further includes an ONU chip coupled to the optical transceiver and configured to communicate with the OLT. Also included is a pluggable interface configured to electrically interface between the ONU chip and a piece of subscriber premise equipment (SPE). The ONU includes a power management module to provide power to the ONU chip and the optical transceiver, using power delivered from the SPE through the pluggable interface. The ONU is enclosed a small form factor enclosure, thereby allowing the pluggable ONU to be directly plugged into the SPE and providing an Ethernet Passive Optical Network (EPON) uplink to the SPE without requiring an separate power supply.
Abstract:
The present invention provides a small form factor, pluggable ONU, which includes a bi-directional optical transceiver configured to transmit optical signals to and receive optical signals from an OLT. The ONU further includes an ONU chip coupled to the optical transceiver and configured to communicate with the OLT. Also included is a pluggable interface configured to electrically interface between the ONU chip and a piece of subscriber premise equipment (SPE). The ONU includes a power management module to provide power to the ONU chip and the optical transceiver, using power delivered from the SPE through the pluggable interface. The ONU is enclosed a small form factor enclosure, thereby allowing the pluggable ONU to be directly plugged into the SPE and providing an Ethernet Passive Optical Network (EPON) uplink to the SPE without requiring an separate power supply.
Abstract:
One embodiment provides a media access control (MAC) module facilitating operations of an Ethernet passive optical network (EPON). The MAC module includes a frame formatter configured to generate a MAC control frame. The generated MAC control frame includes at least one of: an organizationally unique identifier (OUI) field, an OUI-specific operation code (opcode) field, and a number of fields associated with the OUI-specific opcode. Transmission of the MAC control frame facilitates realization of an EPON function based on the fields associated with the OUI-specific opcode.
Abstract:
One embodiment provides a system for performance monitoring in a passive optic network (PON). The system includes an optical line terminal (OLT) and an optical network unit (ONU). The OLT includes an optical transceiver configured to transmit optical signals to and receive optical signals from the ONU, and a performance monitoring mechanism configured to monitor performance of the PON based on received optical signals.