Abstract:
A method (and structure) for a party (the prover) to prove its knowledge, jointly and non-malleably, of multiple secret (fixed and/or ephemeral) Diffie-Hellman exponents (DH-exponents), corresponding to its public (fixed and/or ephemeral) DH-components and with respect to the public (fixed and/or ephemeral) challenging DH-components from another party (the verifier). The joint proof-of-knowledge (JPOK) consists of secrets made by multiplying multiple DH-secrets, which can be generated and verified by each party by its own secret DH-exponents and the public DH-components of both parties. To ensure the non-malleability of the JPOK, the method invented herein makes all these multiplied DH-secrets to be independent, and makes the session-tag committed to the multiplied DH-secrets. To preserve players' privacy and/or to improve protocol efficiency, the invented method makes the DH-secrets to be multiplied to further satisfy at least one of the following (besides above independence and commitments properties): (1) Deniability: all the DH-secrets to be multiplied can be computed out merely from the ephemeral secret DH-exponents and the public DH-components of both parties; (2) Pre-computability: a DH-secret involving a fixed DH-component of a party can be offline pre-computed by its peer; (3) Post-ID computability: a DH-secret involving an ephemeral DH-component of a party can be computed by its peer without knowing that party's identity and/or fixed DH-components. The secrets made by multiplying multiple DH-secrets can then be used to derive session-keys and to generate and verify authenticators between the parties. The invented method can also be used in parallel or subsequently by the parties, possibly with reserved player roles in different runs of the method, for mutual identifications, key confirmations, and for achieving more advanced cryptographic protocols in various settings.
Abstract:
improved methods and apparatus for stripping photoresist and removing ion implant related residues from a work piece surface are provided. According to various embodiments, the workpiece is exposed to a passivation plasma, allowed to cool for a period of time, and then exposed to an oxygen-based or hydrogen-based plasma to remove the photoresist and ion implant related residues. Aspects of the invention include reducing silicon loss, leaving little or no residue while maintaining an acceptable strip rate. In certain embodiments, methods and apparatus remove photoresist material after high-dose ion implantation processes.
Abstract:
Improved methods for stripping photoresist and removing ion implant related residues from a work piece surface are provided. According to various embodiments, plasma is generated using elemental hydrogen, a fluorine-containing gas and a protectant gas. The plasma-activated gases reacts with the high-dose implant resist, removing both the crust and bulk resist layers, while simultaneously protecting exposed portions of the work piece surface. The work piece surface is substantially residue free with low silicon loss.
Abstract:
improved methods and apparatus for stripping photoresist and removing ion implant related residues from a work piece surface are provided. According to various embodiments, the workpiece is exposed to a passivation plasma, allowed to cool for a period of time, and then exposed to an oxygen-based or hydrogen-based plasma to remove the photoresist and ion implant related residues. Aspects of the invention include reducing silicon loss, leaving little or no residue while maintaining an acceptable strip rate. In certain embodiments, methods and apparatus remove photoresist material after high-dose ion implantation processes.
Abstract:
Improved methods for stripping photoresist and removing ion implant related residues from a work piece surface are provided. According to various embodiments, plasma is generated using elemental hydrogen, a fluorine-containing gas and a protectant gas. The plasma-activated gases reacts with the high-dose implant resist, removing both the crust and bulk resist layers, while simultaneously protecting exposed portions of the work piece surface. The work piece surface is substantially residue free with low silicon loss.