Abstract:
A first position (104) of the mobile client is determined at least in part by utilizing first signals received from at least one first signal source. The first signal source operates in a first location determination system (114). A second position (106) of at least one second signal source (120) is determined by utilizing both the determined first position of the mobile client and second signals received from the at least one second signal source (120). The second signal source (120) operates in a second location determination system. A third position (116) of the mobile client is determined utilizing the second signal source (120).
Abstract:
Disclosed is a system for updating an RSSI-based map. A scanning devices notes which tags are seen during a scan and measures a "proxy distance" from the scanning device to each tag. When the scan is initiated, the scanning device measures the RSSIs from the local WAPs. The current location of the scanning device is determined by triangulating from the proxy distances of the scanned tags. That location is then correlated with the contemporaneously measured RSSIs. The correlation is used to update the RSSI-based map. In some embodiments, it is not the scanning device that measures the RSSIs. Instead, the WAPs measure the RSSIs from the scanning device whenever the scanning device transmits the results of a scan. In some embodiments, the operator of the mapped environment places scannable tags at fixed locations. Scans of these fixed-location tags are especially useful when determining the current location of the scanning device.
Abstract:
A method, apparatus, and electronic device for determining a location of a mobile device are disclosed. A receiver may asynchronously receive an access signal from at least three access points of a wireless local area network with the mobile device. A processor may measure an access signal strength for the access signal for each access point. A transmitter may transmit the access signal strengths to a location server to determine the location of the mobile device.
Abstract:
Disclosed is a method for a scanning device to tell its user how to best orient the scanning device to scan a target location. The user approaches the target location and initiates a scan. The results of the scan are analyzed and compared to information about the target location. Based on the analysis, the user is told how to re-orient the scanning device, if that is necessary to achieve an acceptable re-scan of the target location. In a preferred embodiment, a screen on the scanning device presents a two-dimensional map based on the scan results and on the known relative locations of the target location and of nearby non-target locations. Locations on the map are highlighted to tell the user the results of the scan and to direct him to re-orient the scanning device if necessary.
Abstract:
Disclosed is a method for a scanning device to tell its user how to best orient the scanning device to scan a target location. The user approaches the target location and initiates a scan. The results of the scan are analyzed and compared to information about the target location. Based on the analysis, the user is told how to re-orient the scanning device, if that is necessary to achieve an acceptable re-scan of the target location. In a preferred embodiment, a screen on the scanning device presents a two-dimensional map based on the scan results and on the known relative locations of the target location and of nearby non-target locations. Locations on the map are highlighted to tell the user the results of the scan and to direct him to re-orient the scanning device if necessary.