Abstract:
Embodiments relate generally to systems and methods for operating an electrochemical oxygen sensor at low relative humidity (i.e., 15%RH or less). A method may comprise operating an electrochemical sensor to detect oxygen in the field, wherein the electrochemical sensor comprises one or more electrodes and an electrolyte configured to electrically connect the one or more electrodes with an initial concentration of approximately 8 M sulfuric acid; and maintaining the sensor accuracy during the operation of the sensor to detect oxygen in the field, wherein the relative humidity of the environment is approximately 15% or less, without recalibrating the sensor using a source of nitrogen.
Abstract:
Aspects of the disclosure provide an apparatus that includes a transceiver circuit and a processing circuit. The transceiver circuit is configured to receive a trigger signal this is transmitted by another apparatus. The trigger signal triggers transmissions by a first group of apparatuses including the apparatus, and defers transmissions by a second group of apparatuses that interfere the transmissions by the first group of apparatuses. The processing circuit is configured to, in response to the trigger signal, generate a frame with a first preamble structure that is different from a second preamble structure that is used by the second group of apparatuses, and provide the generated frame to the transceiver circuit for transmission.
Abstract:
Aspects of the disclosure provide an apparatus that includes a transceiver circuit and a processing circuit. The transceiver circuit is configured to receive a trigger signal this is transmitted by another apparatus. The trigger signal triggers transmissions by a first group of apparatuses including the apparatus, and defers transmissions by a second group of apparatuses that interfere the transmissions by the first group of apparatuses. The processing circuit is configured to, in response to the trigger signal, generate a frame with a first preamble structure that is different from a second preamble structure that is used by the second group of apparatuses, and provide the generated frame to the transceiver circuit for transmission.
Abstract:
The present invention provides an apparatus and method for control of communication using dual-connectivity mode, and the apparatus includes at least one processing circuitry, and at least one memory for storing instructions to be executed by the processing circuitry, wherein the at least one memory and the instructions are configured to, with the at least one processing circuitry, cause the apparatus at least: to receive and process a communication connection reestablishment request from a communication element communicating in a multi-connectivity mode, to decide, in case a communication connection with the communication element is established, whether or not the multi-connectivity mode of the communication element is kept, and to cause a transmission of an indication towards a source communication network control element of the communication element, wherein the indication reflects the decision whether or not the multi-connectivity mode of the communication element is kept. The present invention can improve the dual connectivity performance, and a potential signaling overhead over network interfaces in case of a reconfiguration failure happening can be reduced.
Abstract:
This invention relates to bisthiazole I and its therapeutic and prophylactic uses, wherein the variables A, R5, R6, and R7 are defined in the specification. Disorders treated and/or prevented include rheumatoid arthritis.
Abstract:
Fused pyridine derivatives shown as the general formula (I), and their pharmaceutically acceptable salts, stereoisomers or solvates thereof are disclosed, which belong to the technical field of medicines. The R1, R2, R3, Q, X and Y substituents in formula (I) are defined as in the description. Also disclosed are the preparation methods, pharmaceutical compositions and uses of the compounds in the manufacture of the medicine for the treatment and/or prevention of noninsulin-dependent diabetes, hyperglycemia, hyperlipidemia and insulin resistance.
Abstract:
This invention relates to bisthiazole I and its therapeutic and prophylactic uses, wherein the variables A, R 5 , R 6 , and R 7 are defined in the specification. Disorders treated and/or prevented include rheumatoid arthritis.
Abstract:
In a method of making a generating device, a plurality of spaced apart elongated seed members are deposited onto a surface of a flexible non-conductive substrate. An elongated conductive layer is applied to a top surface and a first side of each seed member, thereby leaving an exposed second side opposite the first side. A plurality of elongated piezoelectric nanostructures is grown laterally from the second side of each seed member. A second conductive material is deposited onto the substrate adjacent each elongated first conductive layer so as to be coupled the distal end of each of the plurality of elongated piezoelectric nanostructures. The second conductive material is selected so as to form a Schottky barrier between the second conductive material and the distal end of each of the plurality of elongated piezoelectric nanostructures and so as to form an electrical contact with the first conductive layer.
Abstract:
The present invention is related to a method for detecting a transmitted wake-up signal in a wireless communication system comprising a plurality of communication nodes. The method comprises the steps of: receiving at a communication node of said plurality a transmitted wake-up signal, said wake-up signal being split over a plurality of frequency channels and a plurality of time slots, determining per frequency channel an indication of the signal quality on that frequency channel, deciding per frequency channel on removing the signal portion corresponding to that frequency channel, based on the indication of the signal quality, thereby obtaining a reduced received wake-up signal, correlating the reduced received wake-up signal with a version of a local copy of the transmitted wake-up signal, detecting the transmitted wake-up signal from the result of the correlation step.